Abstractions, Algorithms and Infrastructure for Post-Moore Optimizing Compilers

AccML Workshop — January 20th 2020
Albert Cohen
presenting the work of many
Accelerated Computing:
... a Detour Through Tiling
Tiles in Accelerated Computing

1. Hardware

Examples: Google Cloud TPU, Nvidia GPU

Architectural Scalability With Tiling
Tiles Everywhere

1. Hardware
2. Tool flow

Example: Google Edge TPU

- TensorFlow model
 - 32-bit float numbers
 - Include fake quantization nodes

TRAIN
- Quantization aware training

TensorFlow model
- 8-bit fixed numbers

EXPORT
- Frozen graph
 - .pb file

CONVERT
- TOCO

TensorFlow Lite
- .tflite file

COMPILE
- Edge TPU model
 - .tflite file

DEPLOY
- Edge TPU Hardware

Edge computing zoo
Tiles Everywhere

1. Hardware
2. Tool flow
3. Data layout

Example: XLA domain-specific compiler, Tiled data layout

Repeated/Hierarchical Tiling
e.g., BF16 (bfloat16)
on Cloud TPU
(should be 8x128 then 2x1)
Tiles Everywhere

1. Hardware
2. Tool flow
3. Data layout
4. Control flow
5. Data flow
6. Data parallelism

Example: “Single-Op Compiler”
Halide for image processing pipelines
https://halide-lang.org

Meta-programming API and domain-specific language (DSL) for loop transformations, numerical computing kernels

Tiling in Halide

Tiled schedule:
- strip-mine (a.k.a. split)
- permute (a.k.a. reorder)

Vectorized schedule:
- strip-mine
- vectorize inner loop

Non-divisible bounds/extent:
- strip-mine
- shift left/up
- redundant computation
 (also forward substitute/inline operand)
Tiles Everywhere

1. Hardware
2. Tool flow
3. Data layout
4. Control flow
5. Data flow
6. Data parallelism

Example: Halide for image processing pipelines
https://halide-lang.org

And also TVM for neural networks
https://tvm.ai

TVM example: scan cell (RNN)

```python
m = tvm.var("m")
n = tvm.var("n")
X = tvm.placeholder((m,n), name="X")
s_state = tvm.placeholder((m,n))
s_init = tvm.compute((1,n), lambda i: X[0,i])
s_do = tvm.compute((m,n), lambda t,i: s_state[t-1,i] + X[t,i])
s_scan = tvm.scan(s_init, s_do, s_state, inputs=[X])
s = tvm.create_schedule(s_scan.op)

// Schedule to run the scan cell on a CUDA device
block_x = tvm.thread_axis("blockIdx.x")
thread_x = tvm.thread_axis("threadIdx.x")
xo,xi = s[s_init].split(s_init.op.axis[1], factor=num_thread)
s[s_init].bind(xo, block_x)
s[s_init].bind(xi, thread_x)
xo,xi = s[s_do].split(s_do.op.axis[1], factor=num_thread)
s[s_do].bind(xo, block_x)
s[s_do].bind(xi, thread_x)
print(tvm.lower(s, [X, s_scan], simple_mode=True))
```
Stepping Back

Context
1. Heterogeneity in the domains (HPC, ML, signal...) and DSLs
2. Heterogeneity in the hardware and infrastructure
3. Many data types, storage formats

Compiler
4. Other transformations: fusion, fission, pipelining, unrolling...
5. Composition of transformations and mapping decisions
6. Evaluating cost functions, enforcing resource constraints

→ Question
What is the impact on compiler construction, intermediate representations, program analyses and transformations?
Multi-level parallelism

CPU — typically 3 levels: system threads or finer grain tasks, vectors, instruction-level parallelism

GPU — 2 to 8 levels: work groups, work items, warps and vectors, instruction-level parallelism

and related features on other HW accelerators

Deep memory hierarchies

+ temporal, spatial locality, coalescing, latency hiding through multithreading

− cache conflicts, false sharing

... and many other: capacity constraints, alignment, exposed pipelines
Compiler Construction for Acceleration

- Need a program representation to reason about individual array elements, individual iterations, relations among these, and with hardware resources
 - Programming languages may provide high level abstractions for nested loops and arrays, tensor algebra, graphics...
 - The need for performance portability leads to domain-specific approaches. E.g., for ML high-performance kernels alone: XLA, TVM, Tensor Comprehensions, Glow, Tiramisu, etc.

- Yet few compiler intermediate representations reconcile these with
 1. the ability to model hardware features
 2. while capturing complex transformations
 3. supporting both general-purpose domain-specific optimizers
Best-Effort Optimizer

E.g. Intel ICC, Pluto, PPCG, LLVM/Polly

)this is a hammer)
Best-Effort Optimizer

E.g. Intel ICC, Pluto, PPCG, LLVM/Polly

Domain-Specific Optimizer and Code Generator

E.g., XLA, Halide, TVM, Polymage

(this is a hammer)

(these are not nails)
Best-Effort Optimizer

semantical and algorithmic abstractions and design pattern for program representation, analysis, transformation, optimization, code generation

E.g. LLVM

Domain-Specific Optimizer and Code Generator

E.g., XLA, Halide, TVM, Polymage

(these are not nails)

(this is a hammer)
MLIR — What? Why?

1. The right compute/data abstraction at the right time
2. Progressive conversion and lowering of “ops”
3. Extend and reuse
4. Industry standard

→ now an LLVM subproject
From Programming Languages to the TensorFlow Compiler

- Domain specific optimizations, progressive lowering
- Common LLVM platform for mid/low-level optimizing compilation in SSA form
The TensorFlow Compiler Ecosystem

Many “Graph” IRs, each with challenges:

- Similar-but-different proprietary technologies: not going away anytime soon
- Fragile, poor UI when failures happen: e.g. poor/no location info, or even crashes
- Duplication of infrastructure at all levels
MLIR: A toolkit for representing and transforming “code”

Represent and transform IR ⇄↺⇓

Represent Multiple Levels of IR at the same time

- tree-based IRs (ASTs)
- data-flow graph IRs (TF Graph, SSA)
- control-flow graph IRs (TF Graph, SSA)
- target-specific parallelism (CPU, GPU, TPU)
- machine instructions

While enabling

Common compiler infrastructure

- location tracking
- richer type system(s)
- common set of conversion passes
- LLVM-inspired infrastructure

And much more
MLIR Core Concepts

Very few core-defined aspects, MLIR is generic and favor extensibility:

- **Region**: a list of basic blocks chained through their terminators to form a CFG.

- **Basic block**: a sequential list of Operations. They take arguments instead of using phi nodes.

- **Operation**: a generic single unit of “code”.

 - takes individual Values as operands,

 - produces one or more SSA Values as results.

 - A terminator operation also has a list of successors blocks, as well as arguments matching the blocks.

There aren’t any hard-coded structures or specific operations in MLIR:

even Module and Function are defined just as regular operations!
%res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 } : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">) loc(callsite("foo" at "mysource.cc":10:8))
Example

```mlir
func @some_func(%arg0: !random_dialect<"custom_type">) -> !another_dialect<"other_type"> {
  %result = "custom.operation"(%arg0) : (!random_dialect<"custom_type">) -> !another_dialect<"other_type">
  return %result : !another_dialect<"other_type">
}
```

Yes: this is a fully valid textual IR module: try round-tripping with `mlir-opt`!
MLIR Operations have Regions

%result = "custom.operation"(%arg0)({
 // Here is a region (new CFG) containing blocks of ops
 ^block:
 %inner_op = "custom.operation"(%input) ...
 %other_op = "custom.operation"(%inner_op) ...
 ...
 }, {
 // Possibly multiple regions per operation
 })

{ attribute = value : !dialect"type" } :
 (!random_dialect"custom_type") -> !another_dialect"other_type"
(Operations \rightarrow Regions \rightarrow Blocks)$^+$

MLIR is infinitely nested through a recursively defined structure

- Nested regions with control flow, modules, semantic assumptions and guarantees
- Modules and functions are operations with a nested region

```mlir
%results:2 = "d.operation"(%arg0, %arg1) ({
  // Regions belong to Ops.
  ^block(%argument: !d.type):
    // Ops have function types
    %value = "nested.operation"() ({
      // Nested region
      "d.op"() : () → ()
    }) : () → (!d.other_type)
    "consume.value"(%value) : (!d,other_type) → ()
  } [^block(%argument : !d.type)] : () → ()

  // Ops have a list of attributes
  {attribute="value" : !d.type} : () → (!d.type, !d.other_type)
})
```
func @foo(%cond : tensor<i1>, %arg1 : tensor<...>) : (tensor<...>, tensor<...>) {
 %relu = tf.Relu %arg1 : tensor<...>
 %produced_values:2 = tf.if(%cond) {
 %true_branch = tf.Add %arg1, %relu : tensor<...>
 tf.yield %true_branch, %relu : tensor<...>, tensor<...>
 } else {
 %false_branch = tf.Sub %arg1, %relu : tensor<...>
 tf.yield %relu, %false_branch : tensor<...>, tensor<...>
 }
 tf.print %true_branch : tensor<...>
 return %produced_values#1, %produced_values#0 : tensor<...>, tensor<...>
}

- “Implicit capture” of a value inside a region is OK
 (actually only if allowed by the operation holding the region, here tf.if)
- For other purposes, a region is similar to a function call, where there is a
 single user of this function and we see all the context -> more flexibility.
- On the other hand, the values defined in a region can’t escape
The “Catch”

```
func @main() {
    %0 = "libc.printf"() : () -> tensor<10x11>
}
```

Yes: this is also fully valid textual IR module!

It is not valid though! Broken on many aspects:

- `printf` is not a terminator,
- it should take an operand
- it shouldn’t return a tensor value

XML/JSON of compiler IRs?!?
Extensible Operations Allow Multi-Level IR

TensorFlow

\[
\text{%x} = "\text{tf.Conv2d}"(\text{%input}, \text{%filter})
\{\text{strides: [1,1,2,1], padding: "SAME", dilations: [2,1,1,1]}\}
: (\text{tensor<*xf32>, tensor<*xf32>}) \rightarrow \text{tensor<*xf32>}
\]

XLA HLO

\[
\text{%m} = "\text{xla.AllToAll}"(\text{%z})
\{\text{split_dimension: 1, concat_dimension: 0, split_count: 2}\}
: (\text{memref<300x200x32xf32>}) \rightarrow \text{memref<600x100x32xf32>}
\]

LLVM IR

\[
\text{%f} = "\text{llvm.add}"(\text{%a}, \text{%b})
: (\text{f32}, \text{f32}) \rightarrow \text{f32}
\]

And many other abstractions for compute, control, data, interfaces...
Operations Have Nested Regions... in a Linear IR ?!

```python
%2 = xla.fusion (%0 : tensor<f32>, %1 : tensor<f32>) : tensor<f32> {
^bb0(%a0 : tensor<f32>, %a1 : tensor<f32>):
  %x0 = xla.add %a0, %a1 : tensor<f32>
  %x1 = xla.relu %x0 : tensor<f32>
  return %x1
}

%7 = tf.If(%arg0 : tensor<i1>, %arg1 : tensor<2xf32>) -> tensor<2xf32> {
  ... “then” code...
  return ...
} else {
  ... “else” code...
  return ...
}
```

Common data flow (SSA) and control flow graph (CFG) of all operations in a region → lambdas/closures, parallelism, offloading, etc.
Extensibility Through Dialects

A MLIR dialect is a logical grouping including:

- A prefix ("namespace" reservation)
- A list of types, each one with its C++ class implementation
- A list of operations, each one with its C++ class implementation
 - Verifier for operation invariants (e.g. `printf` first operand is a string)
 - Traits for generic semantics (side-effects, constant-folding, CSE-allowed, etc.)
- Possibly custom parser and printer
- Compilation passes: custom analysis, transformations, and dialect conversions
- Interfaces to register/query transformations and analyses
Example: TensorFlow in MLIR

Computational data-flow graphs, and modeling control flow, asynchrony
TensorFlow in MLIR — Computational Graph Dialect

```mlir
func @foo(%arg0 : tensor<i1>, %arg1 : tensor<...>) ... {
  %X = tf.X(%arg0 : tensor<...>)
  %Y = tf.Y(%arg0, %arg1 : tensor<...>, tensor<...>)
  %Z:2 = tf.Z(%X, %Y : tensor<...>, tensor<...>)
  return %Z#0, %Z#1 : tensor<...>, tensor<...>
}
```
TensorFlow in MLIR — Control Flow and Concurrency

Control flow and dynamic features of TF1, TF2
- Conversion from control to data flow
- Lazy evaluation

Concurrency
- Sequential execution in blocks
- Distribution
- Offloading
- Implicit concurrency in `tf.graph` regions
 - Implicit futures for SSA-friendly, asynchronous task parallelism

→ Research: task parallelism, memory models, separation logic
```python
%0 = tf.graph (%arg0 : tensor<f32>, %arg1 : tensor<f32>,
              %arg2 : !tf.resource) {
  // Execution of these operations is asynchronous, the %control
  // return value can be used to impose extra runtime ordering,
  // for example the assignment to the variable %arg2 is ordered
  // after the read explicitly below.
  %1, %control = tf.ReadVariableOp(%arg2)
    : (!tf.resource) -> (tensor<f32>, !tf.control)
  %2, %control_1 = tf.Add(%arg0, %1)
    : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
  %control_2 = tf.AssignVariableOp(%arg2, %2, %control)
    : (!tf.resource, tensor<f32>) -> !tf.control
  %3, %control_3 = tf.Add(%2, %arg1)
    : (tensor<f32>, tensor<f32>) -> (tensor<f32>, !tf.control)
  tf.fetch %3, %control_2 : tensor<f32>, !tf.control
}
```
Example: Linalg Dialect

Better and beyond single-op compilers: composition and decomposition of structured operations
Single-Op Compiler: Better and Beyond

- **Code generation path** mixing different styles of **abstraction** and **transformation**
 - Combinators (tile, fuse, communication generation on high level operations)
 - Loop-based (dependence analysis, fuse, vectorize, pipeline, unroll-and-jam)
 - SSA (data flow)
- That **does not require heroic analyses** and transformations
 - Declarative properties enable transformations w/o complex analyses
 - If/when good analyses exist, we can use them
- Beyond **black-box** numerical libraries
 - Compiling loops + native library calls or hardware blocks
Linalg Type System And Type Building Ops

- **Range type**: create a \((\text{min}, \text{max}, \text{step})\) triple of \text{index}

 \[
 \%0 = \text{linalg.range } \%c0:%\text{arg1}:%\text{c1} : !\text{linalg.range}
 \]

 → for stepping over loop iterations (loop bounds) & data structures

- **Strided memref type**: create an n-d "indexing" over a \text{memref} buffer

 \[
 \%8 = \text{std.view } \%7[\%c0][\%s0, \%s1] : \text{memref}<?\times?\text{xf32}, \text{offset}=0, \text{strides}=[?, 1]>
 \]
Strided MemRef Type and Descriptor

Base pointer

Begin: 0
Size: 4
End: 4

Stride: 6*3=18

Begin: 2
Size: 3
End: 5

{ float*, # base pointer
 i64, # base offset
 i64[2] # sizes
 i64[2] } # strides

%m = alloc(): memref<4x6 x f32>
%v = view %m[%c0][%r,%r]: memref<?x?xf32, offset = 0, strides = [?, 1]>
Linalg View

- Simplifying assumptions for analyses and IR construction
 - E.g. non-overlapping rectangular memory regions (symbolic shapes)
 - Data abstraction encodes boundary conditions

Same library call, data structure adapts to full/partial views/tiles

\texttt{matmul(vA, vB, vC)}
Defining Matmul

- **linalg.matmul** operates on strided memrefs (including contiguous memref with canonical strides)

```haskell
  return
}
```
func @matmul_as_matvec(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) {
 %c0 = constant 0 : index
 %c1 = constant 1 : index
 %M = dim %A, 0 : memref<?x?xf32>
 %N = dim %C, 1 : memref<?x?xf32>
 %K = dim %A, 1 : memref<?x?xf32>
 %rM = linalg.range %c0:%M:%c1 : !linalg.range
 %rK = linalg.range %c0:%K:%c1 : !linalg.range
 loop.for %col = 0 to %N step %c1 {
 %7 = linalg.slice %B[%rK, %col] : memref<?x?xf32>, !linalg.range, index
 %8 = linalg.slice %C[%rM, %col] : memref<?x?xf32>, !linalg.range, index
 linalg.matvec(%A, %7, %8) : memref<?x?xf32>, memref<?xf32>, memref<?xf32>
 }
 return
}
Matmul to Matvec: Implementation

// Drop the `j` loop from matmul(i, j, k).
// Parallel dimensions permute.
// TODO: Specify as a composable rewrite pattern.

```
void MatmulOp::rewriteAsMatvec() {
  auto *op = getOperation();
  ScopedContext scope(FuncBuilder(op), op->getLoc());
  IndexHandle j;
  auto *vA(getInputView(0)), *vB(...), *vC(...);
  Value *range = getViewRootIndexing(vB, 1).first;
  LoopNestRangeBuilder(&j, range)(
    matvec(vA, slice(vB, j, 1), slice(vC, j, 1)),
  );
}
```

Extracting/analyzing this information from transformed and tiled loops would take much more effort
With high-level dialects it is a simple rewrite rule
func @matmul_tiled_loops(%arg0: memref<?x?xf32>,
 %arg1: memref<?x?xf32>, %arg2: memref<?x?xf32>) {
 %c0 = constant 0 : index
 %cst = constant 0.000000e+00 : f32
 %M = dim %arg0, 0 : memref<?x?xf32>
 %N = dim %arg2, 1 : memref<?x?xf32>
 %K = dim %arg0, 1 : memref<?x?xf32>
 loop.for %i0 = 0 to %M step 8 {
 loop.for %i1 = 0 to %N step 9 {
 loop.for %i2 = max(%i0, %c0) to min(%i0 + 8, %M) {
 affine.for %i4 = max(%i1, %c0) to min(%i1 + 9, %N) {
 %3 = cmpi "eq", %i2, %c0 : index
 %6 = load %arg2[%i3, %i4] : memref<?x?xf32>
 %7 = select %3, %cst, %6 : f32
 %9 = load %arg1[%i2, %i4] : memref<?x?xf32>
 %10 = load %arg0[%i3, %i2] : memref<?x?xf32>
 %11 = mulf %10, %9 : f32
 %12 = addf %7, %11 : f32
 store %12, %arg2[%i3, %i4] : memref<?x?xf32>
 }
 }
 }
 }
}

linalg.matmul(%A, %B, %C) : memref<?x?xf32>, ...

tileSizes = {8, 9}

Boundary conditions
View Tiling

```swift
func @matmul_tiled_views(%A: memref<?x?xf32>, %B: memref<?x?xf32>, %C: memref<?x?xf32>) {
    %c0 = constant 0 : index
    %c8 = constant 8 : index
    %c9 = constant 9 : index
    %M = dim %A, 0 : memref<?x?xf32>
    %N = dim %C, 1 : memref<?x?xf32>
    %K = dim %A, 1 : memref<?x?xf32>
    loop.for %i0 = 0 to %M step %c8 {
        loop.for %i1 = 0 to %N step %c9 {
            %4 = affine.min (%i0 + %c8, %M)
            %5 = affine.min (%i1 + %c9, %N)
            %6 = linalg.subview %A[%i0, %c0][%4, %K] : memref<?x?xf32, offset = ?, strides = [?, 1]>
            %7 = linalg.subview %B[%c0, %i1][%K, %5] : memref<?x?xf32, offset = ?, strides = [?, 1]>
            %8 = linalg.subview %C[%i0, %i1][%M, %N] : memref<?x?xf32, offset = ?, strides = [?, 1]>
            linalg.matmul(%6, %7, %C) : memref<?x?xf32, offset = ?, strides = [?, 1]>,
            memref<?x?xf32, offset = ?, strides = [?, 1]>,
            memref<?x?xf32, offset = ?, strides = [?, 1]>,
        }
    }
}
```
Example: Affine Dialect

For general-purpose loop nest optimization, vectorization, data parallelization, optimization of array layout, storage, transfer
func @test() {
 affine.for %k = 0 to 10 {
 affine.for %l = 0 to 10 {
 affine.if (%d0) : (d0 - 1 >= 0, -d0 + 8 >= 0)(%k) {
 // Call foo except on the first and last iteration of %k
 "foo"(%k) : (index) -> ()
 }
 }
 }
 return
}
MLIR Affine Dialect’s Custom Parser and Printer

#map0 = () -> (0)
#map1 = () -> (10)
#set0 = (d0) : (d0 * 8 - 4 >= 0, d0 * -8 + 7 >= 0)

func @test() {
 affine.for %k = 0 to 10 {
 affine.for %l = 0 to 10 {
 affine.if (d0) : (d0 - 1 >= 0, -d0 + 8 >= 0) {
 // Call foo except on the first and last iteration
 "foo"(%k) : (index) -> ()
 }
 }
 }
 return
}

#map0 = () -> (0)
#map1 = () -> (10)
#set0 = (d0) : (d0 * 8 - 4 >= 0, d0 * -8 + 7 >= 0)

func @test() {
 "affine.for"() ({
 ^bb0(%arg0: index):
 "affine.for"() ({
 ^bb0(%arg1: index):
 "affine.if"(%arg0) ({
 "foo"(%arg0) : (index) -> ()
 "affine.terminator"() : () -> ()
 },
)
)
 }) {condition = #set0} : (index) -> ()
 "affine.terminator"() : () -> ()
 }) {lower_bound = #map0, step = 1 : index, upper_bound = #map1} : () -> ()
 "affine.terminator"() : () -> ()
} {lower_bound = #map0, step = 1 : index, upper_bound = #map1} : () -> ()
 "std.return"() : () -> ()
}

You get the code on the left from the code on the right with:

 mlir-opt -- affine.mlir --mlir-print-op-generic
Affine Control Flow and Data Layout

- Polynomial multiplication kernel: \(C(i+j) += A(i) \times B(j) \)

```c
// Affine loops are Ops with regions.
affine.for %arg0 = 0 to %N {
    // Only loop-invariant values, loop iterators, and affine
    // functions of those are allowed.
    affine.for %arg1 = 0 to %N {
        // Body of affine for loops obey SSA.
        %0 = affine.load %A[%arg0] : memref<? x f32>
        // Structured memory reference (memref) type can have
        // affine layout maps.
        %1 = affine.load %B[%arg1]
            : memref<? x f32, (d0)[s0] -> (d0 + s0)>
        %2 = mulf %0, %1 : f32
        // Affine load/store can have affine expressions as subscripts
        %3 = affine.load %C[%arg0 + %arg1] : memref<? x f32>
        %4 = addf %3, %2 : f32
        affine.store %4, %C[%arg0 + %arg1] : memref<? x f32>
    }
}
```
Affine Dialect for Polyhedral Compilation

- Related work and tool flows
 - Intel Tile and Stripe dialects (from vertex.ai PlaidML)
 - ETHZ/Vulcan/MeteoSwiss Stencil dialect

- And many others: DSLs, low level dialects, transformation frameworks...
Example: MLIR PatternMatch Execution

Meta-level: MLIR applied to MLIR internals!
MLIR Pattern Matching and Rewrite
~ Instruction Selection problem.
MLIR Pattern Matching and Rewrite

An MLIR dialect to manipulate MLIR IR!

```mlir
func @matcher(%0 : !Operation) {
  ^bb0:
    CheckArgCount(%0)^bb1, ^ex0] {count = 2} : (!Operation) -> ()
  ^bb1:
    CheckOpName(%0)^bb2, ^bb5] {name = "add"} : (!Operation) -> ()
  ^bb2:
    %1 = GetOperand(%0) {index = 0} : (!Operation) -> !Value
    %2 = GetOperand(%0) {index = 1} : (!Operation) -> !Value
    ValueEqualTo(%1, %2)^rr0, ^bb3] : (!Value, !Value) -> ()
  ^rr0:
    // Save x
    RegisterResult(%1)^bb3] {id = 0} : (!Value) -> ()
  ^bb3:
    %3 = GetDefiningOp(%2) : (!Value) -> !Operation
    CheckOpName(%3)^bb4, ^bb5] {name = "mul"} : (!Operation) -> ()
  ^bb4:
    CheckArgCount(%3)^rr1, ^bb5] {count = 2} : (!Operation) -> ()
  ^rr1:
    // Save x, y, and z
    %4 = GetOperand(%3) {index = 0} : (!Operation) -> !Value
    %5 = GetOperand(%4) {index = 1} : (!Operation) -> !Value
    RegisterResult(%1, %4, %5)^bb5] {id = 1} : (!Value, !Value, !Value) -> ()
  ^bb5:
    // Previous calls are not necessarily visible here
    %6 = GetOperand(%0) {index = 0} : (!Operation) -> !Value
    %7 = GetOperand(%0) {index = 1} : (!Operation) -> !Value
    ValueEqualTo(%6, %7)^bb6, ^ex0] : (!Value, !Value) -> ()
  ^bb6:
    CheckOpName(%0)^rr2, ^ex0] {name = "mul"} : (!Operation) -> ()
  ^rr2:
    // Save x
    RegisterResult(%6)^ex0] {id = 2} : (!Value) -> ()
  ^ex0:
    return
}
```
Example: Stencil Computation

MLIR for accelerating climate modelling
A Compiler Intermediate Representation for Stencils
JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

Domain-Science vs Computer-Science

- solve PDE
- finite differences
- structured grid

- element-wise computation
- fixed neighborhood

\[
\text{lap}(i,j) = -4.0 \times \text{in}(i,j) + \text{in}(i-1,j) + \text{in}(i+1,j) + \text{in}(i,j-1) + \text{in}(i,j+1)
\]
A Compiler Intermediate Representation for Stencils

JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

Our Current Toolchain

Dawn → IIR → MLIR

Stencil → Stencil
Stencil → Affine
Std Ops → GPU

CUDA → GPU Code

95% test coverage
A Compiler Intermediate Representation for Stencils

JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

Low-level Dialect (IIR)

```plaintext
stencil.iir {
  stencil.stencil(%arg0: !stencil"field:f64"), %arg1: !stencil"field:f64") {
    stencil.multi_stage "Parallel" {
      stencil.stage {
        stencil.do_method [0, 0, 60, 0] {
          %0 = stencil.field_access %arg1 [0, 0, 0] : !stencil"ptr:f64"
          %1 = stencil.field_access %arg0 [0, 0, 0] : !stencil"ptr:f64"
          %2 = stencil.get_value %0 : f64
          %3 = stencil.get_value %1 : f64
          %4 = addf %2, %3 : f64
          %cst = constant 4.000000E+00 : f64
          %5 = mulf %4, %cst
          stencil.write %0, %5 : f64
        }
      }
    }
  }
}
```
Example: Fortran IR

Flang: the LLVM Fortran Fortrend
An MLIR Dialect for High-Level Optimization of Fortran

Eric Schweitz (NVIDIA)

FLANG
The LLVM Fortran compiler

F18 Fortran front-end \(\xrightarrow{\text{lowering}}\) FIR/MLIR optimizer \(\xrightarrow{\text{LLVM IR}}\) LLVM

Target Runtime & Toolchain

010110
110011
101000
0001

FIR: high-level Fortran IR
Built on the MLIR infrastructure
Common path from syntactic to static analysis and code gen
Shrink abstraction gap: core Fortran operational properties
Focus on writing Fortran aware optimizations
Separation of concerns: constraints checking vs. optimizing computation
An MLIR Dialect for High-Level Optimization of Fortran

Eric Schweitz (NVIDIA)

LOOPS

An example of loop optimization

```c
// subroutine convolution(r, f, g)
func @convolution(%r : !fir.box<!fir.array<?,f32>>, %f : !fir.box<...>, %g : !fir.box<...>) {
  %uf:3 = fir.box_dims %f, 0 : (!fir.box<...>, index) -> (index, index, index) ... // and %ug:3
  fir.loop %n = 1 to %uf#1 {
    fir.loop %k = 1 to %ug#1 {
      %2 = subi %n, %k : index
      %3 = fir.coordinate_of %f, %2 : (!fir.box<...>, index) -> !fir.ref<f32>
      %4 = fir.load %3 : !fir.ref<f32> ... // and likewise %6 = load g[k]
      %7 = mulf %6, %4 : f32 ... // and likewise %9 = load r[n]
      %10 = addf %9, %7 : f32
      fir.store %10 to %8 : !fir.ref<f32>
    }
  }
}
```
OBJECT-ORIENTED PROGRAMMING
FIR: Devirtualization

// dispatch table for type(u)
fir.dispatch_table @dttable_type_u {
 fir.dt_entry "method", @u_method
}

%uv = fir.alloca !fir.type<u> : !fir.ref<!fir.type<u>>
fir.dispatch "method"(%uv) : (!fir.ref<!fir.type<u>>) -> ()
Dialect Combination: Heterogeneous Compiler IR
Unified Accelerator and Host Representation

```plaintext
func @some_func(arg0 : memref<?xf32>) {
  %cst = constant 8 : index
  gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %cst, %grid_y = %cst,
      %grid_z = %cst)
    threads(%tx, %ty, %tz) in (%block_x = %cst, %block_y = %cst,
                       %block_z = %cst) {
      call @device_function() : () -> ()
      gpu.return
    }
  return
}

func @device_function() {
  call @recursive_device_function() : () -> ()
  gpu.return
}

func @recursive_device_function() {
  call @recursive_device_function() : () -> ()
  gpu.return
}
```
Nested Module Allows Splitting Host/Device, Still in the Same IR

```mlir
module attributes {gpu.container_module} {
  func @some_func(%arg0: memref<?xf32>) {
    %c8 = constant 8 : index
    gpu.launch_func(%c8, %c8, %c8, %c8, %c8, %c8) {
      kernel = "function_call_kernel", kernel_module = @function_call_kernel
      : (index, index, index, index, index, index) -> ()
      return
    }
  }
}

module @function_call_kernel attributes {gpu.kernel_module} {
  func @function_call_kernel() attributes {gpu.kernel} {
    %0 = gpu.block_id() {dimension = "x"} : () -> index
    ...
    %3 = gpu.thread_id() {dimension = "x"} : () -> index
    ...
    call @device_function() : () -> ()
    return
  }
  func @device_function() {
    call @recursive_device_function() : () -> ()
    gpu.return
  }
}
llvm.mlir.global internal @global(42 : i64) : !llvm.i64
func @recursive_device_function() {
  call @recursive_device_function() : () -> ()
  gpu.return
}
```
Stepping Back: Strengths of Polyhedral Compilation
Decouple intricate optimization problems

<table>
<thead>
<tr>
<th>Candidate Implementations</th>
<th>Constraints</th>
<th>Optimization / Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Optimizations and lowering, choices and transformations e.g., tile? unroll? ordering?</td>
<td>● Semantics e.g., def-use, array dependences</td>
<td>● Objective functions linear approximations, resource counting, roofline modeling...</td>
</tr>
<tr>
<td>● Generate imperative code, calls to native libraries, memory management</td>
<td>● Resource constraints e.g., local memory, DMA</td>
<td>● Feedback from actual execution profile-directed, JIT, trace-based...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>● Combinatorial optimization ILP, SMT, CSP, graph algorithms, reinforcement learning...</td>
</tr>
</tbody>
</table>
Then, Isn’t it Much More Than Affine Loops and Sets/Maps?

- Example: isl schedule trees, inspiration for the MLIR affine dialect

<table>
<thead>
<tr>
<th>Domain</th>
<th>{S(i, j) \mid 0 \leq i < N \land 0 \leq j < K}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{T(i, j, k) \mid 0 \leq i < N \land 0 \leq j < K \land 0 \leq k < M}</td>
</tr>
<tr>
<td>Context</td>
<td>{N = M = 16 \land K = 1000}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band</th>
<th>{S(i, j) \rightarrow (i, j)}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{T(i, j, k) \rightarrow (i, j)}</td>
</tr>
<tr>
<td>Sequence</td>
<td>Filter {S(i, j)}</td>
</tr>
<tr>
<td></td>
<td>Filter {T(i, j, k)}</td>
</tr>
<tr>
<td></td>
<td>Band {T(i, j, k) \rightarrow (k)}</td>
</tr>
</tbody>
</table>

(a) canonical sgemm

<table>
<thead>
<tr>
<th>Domain</th>
<th>{S(i, j) \mid 0 \leq i < N \land 0 \leq j < K}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{T(i, j, k) \mid 0 \leq i < N \land 0 \leq j < K \land 0 \leq k < M}</td>
</tr>
<tr>
<td>Context</td>
<td>{N = M = 512 \land 0 \leq b_x, b_y \leq 32 \land 0 \leq t_x, t_y < 16}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band</th>
<th>{S(i, j) \rightarrow (32 \mid i/32, 32 \mid j/32)}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{T(i, j, k) \rightarrow (32 \mid i/32, 32 \mid j/32)}</td>
</tr>
<tr>
<td>Sequence</td>
<td>Filter {S(i, j)}</td>
</tr>
<tr>
<td></td>
<td>Filter {T(i, j, k)}</td>
</tr>
<tr>
<td></td>
<td>Band {T(i, j, k) \rightarrow (k)}</td>
</tr>
</tbody>
</table>

(b) fused

<table>
<thead>
<tr>
<th>Domain</th>
<th>{S(i, j) \mid 0 \leq i < N \land 0 \leq j < K}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{T(i, j, k) \mid 0 \leq i < N \land 0 \leq j < K \land 0 \leq k < M}</td>
</tr>
<tr>
<td>Context</td>
<td>{N = M = 32 \land 0 \leq k < 16}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band</th>
<th>{S(i, j) \rightarrow (i \mod 32, j \mod 32)}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{T(i, j, k) \rightarrow (i \mod 32, j \mod 32)}</td>
</tr>
<tr>
<td>Sequence</td>
<td>Filter {S(i, j)}</td>
</tr>
<tr>
<td></td>
<td>Filter {T(i, j, k)}</td>
</tr>
<tr>
<td></td>
<td>Band {T(i, j, k) \rightarrow (k)}</td>
</tr>
</tbody>
</table>

(c) fused and tiled

<table>
<thead>
<tr>
<th>Domain</th>
<th>{S(i, j) \mid 0 \leq i < N \land 0 \leq j < K}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{T(i, j, k) \mid 0 \leq i < N \land 0 \leq j < K \land 0 \leq k < M}</td>
</tr>
<tr>
<td>Context</td>
<td>{N = M = 32 \land 0 \leq k < 16}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band</th>
<th>{S(i, j) \rightarrow (i \mod 32, j \mod 32)}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{T(i, j, k) \rightarrow (i \mod 32, j \mod 32)}</td>
</tr>
<tr>
<td>Sequence</td>
<td>Filter {S(i, j)}</td>
</tr>
<tr>
<td></td>
<td>Filter {T(i, j, k)}</td>
</tr>
<tr>
<td></td>
<td>Band {T(i, j, k) \rightarrow (i \mod 32, j \mod 32)}</td>
</tr>
</tbody>
</table>

(d) fused, tiled and sunk

<table>
<thead>
<tr>
<th>Domain</th>
<th>{S(i, j) \mid 0 \leq i < N \land 0 \leq j < K}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{T(i, j, k) \mid 0 \leq i < N \land 0 \leq j < K \land 0 \leq k < M}</td>
</tr>
<tr>
<td>Context</td>
<td>{N = M = 32 \land 0 \leq k < 16}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Band</th>
<th>{S(i, j) \rightarrow (i \mod 32, j \mod 32)}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{T(i, j, k) \rightarrow (i \mod 32, j \mod 32)}</td>
</tr>
<tr>
<td>Sequence</td>
<td>Filter {S(i, j)}</td>
</tr>
<tr>
<td></td>
<td>Filter {T(i, j, k)}</td>
</tr>
<tr>
<td></td>
<td>Band {T(i, j, k) \rightarrow (i \mod 32, j \mod 32)}</td>
</tr>
</tbody>
</table>

(e) fused, tiled, sunk and mapped

Optimization steps for sgemm
Integer Set Library (isl)

- Mathematical core: parametric linear optimization, Presburger arithmetic used in LLVM Polly and many research projects including Pluto, PPCG, PoCC, Tensor Comprehensions...

- Building on 12 years of collaboration
 Inria, ARM, ETH Zürich
 AMD, Qualcomm, Xilinx, Facebook
 IISc, IIT Hyderabad
 Ohio State University, Colorado State University, Rice University
 Google Summer of Code
Observation

Most program analyses and transformations over numerical computations can be captured using *symbolic/parametric intervals*

→ need an abstraction for *symbolic (parametric) integral hyper-rectangles*: a *sub-polyhedral abstraction*

→ support *tiling on dynamic shapes*

→ support *shifting/pipelining*

→ *transformation composition is key*
(Sub-)Polyhedral Abstraction Examples (not integer-precise)

Theme: Trade precision for cost.

1. **Interval**
 - Precision: \(a \leq x_i \leq b \)

2. **Octagon (UTVPI)**
 - Precision: \(\pm x_i \pm x_j \leq c \)

3. **TVPI**
 - Precision: \(ax_i + bx_j \leq c \)

4. **Convex Polyhedra**
 - Precision: \(\sum a_i x_i \leq c \)

Ordering by Precision and Complexity

Intervals \(\subset \) Octagons (UTVPI) \(\subset \) TVPI \(\subset \) Conv.Poly
MLIR’s Research Proposal for a Polyhedral-Lite Framework

1. Sufficiently rich abstraction and collection of algorithms to support a complete, low complexity, easy to implement, easy to adopt, sub-polyhedral compilation flow that includes tiling
 “complete” = loop nest + layout + data movement + vectorization + operator graph + composable
 “sub-polyhedral” = less expressive than Presburger arithmetic, but still integer sets

2. Implemented on two’s complement machine arithmetic, rather than natural/relative numbers (bignums, e.g., GMP)
 aiming for correctness-by-construction whenever possible, resorting to static safety checks when not, and to runtime safety checks as a rare last resort
MLIR for Accelerated Computing in a Nutshell

MLIR is a powerful infrastructure for

- The compilation of high-level abstractions and domain-specific constructs for ML and HPC
- Reducing the impedance mismatch across languages, abstraction levels, specific ISAs and APIs
- Gradual and partial lowering, legalization from dialect to dialect, mixing dialects
- Code reuse in a production environment, using a robust SSA-based LLVM-style infrastructure
- Research across the computing system stack

Check out [github], [mailing list], [chat room], [weekly public meeting]
Stay tuned for [further announcements]
Get started with the [tutorial] (slides)
Workshops: [LLVM Dev Meetings]
 [LCPC MLIR4HPC] - HiPEAC [AccML] - CGO [C4ML] - more to come