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ABSTRACT 
Provenance databases are an important asset in data analytics of 
large-scale scientific data. The data derivation path allows for 
identifying parameters, files and domain data values of interest. In 
scientific workflows, provenance data is automatically captured 
by workflow systems. However, the power of provenance data 
analyses depends on the expressiveness of domain-specific data 
along the provenance traces. While much has been done through 
the W3C PROV initiative and its PROV-DM to represent generic 
provenance data, representing domain-specific data in provenance 
traces has received little attention, yet it accounts for a large 
number of provenance analytical queries. Such queries are based 
on selections on data values from input/output artifacts along 
workflow activities. There are several problems in modeling and 
capturing values from domain-specific attributes, some of them 
are related to managing provenance granularity, others to 
addressing data values hidden inside files and representing the 
semantics of domain data. In this work, we discuss these open 
issues and propose some alternatives to domain-specific 
provenance data capture, representation, storage and queries. 
Addressing these issues may be decisive in using provenance to 
drive scientific data analyses at large-scale.  

1. INTRODUCTION 
Scientific Workflow Management Systems (SWfMS) have been 
helping on several scientific data analysis. SWfMS with parallel 
processing such as Pegasus [1], Swift/T [2] and SciCumulus [3], 
automatically partition data input and manage the dataflow 
generation in parallel processing data at large scale, in clusters or 
clouds. In addition to providing a high scalability, parallel 
SWfMS systems can improve scientific data analyses through 
provenance database query support. Provenance data from 
scientific workflows represent the data derivation path, which 
allows for identifying parameters, files and domain data values of 
interest [4].  

Domain-specific data analysis account for most of provenance 
queries found in the Provenance Challenge series and in reports 
with real scientific workflows [5,6]. The data analytical power of 
provenance depends on the expressiveness of domain data in 
provenance traces. For example, in bioinformatics (e.g. SciPhy, a 
workflow for Phylogenetic analysis [7]), workflows may involve 
genome sequence similarity analysis programs that register the 
resulting similarity value inside an output file. In this case, the 

required domain data value is outside the scope of the workflow 
provenance traces. As observed by Alper et al. [5], many 
provenance queries are based on data values that are "assumed" to 
exist. Even when they do exist, in the provenance trace, it may be 
difficult to reference domain-specific data in a query. There are 
several open issues in querying domain data from provenance 
databases. Basically these challenges are related to domain data 
values that must appear explicitly in the provenance trace; and 
values that have to be addressable by a provenance query 
language, i.e., there must be an access path to be used in searching 
for the required domain value. We discuss these two issues as 
follows.  

The first issue is related to defining how much domain data 
should be represented in provenance traces. This is highly related 
to provenance granularity, which has been discussed in several 
papers, such as: [8], [9], [10]. Provenance in coarse grain is 
represented generically as input artifacts transformed by activities 
that generate output artifacts. Individual domain-data values are 
not represented in coarse-grain, unless they are explicitly defined 
as an activity output. Many relevant domain-specific values are 
"hidden" inside input/output raw data files. In this case, 
provenance database queries may just obtain a specific file 
identifier. Then, this file has to be further analyzed, based on its 
contents.  In this scenario, provenance data acts as pointers to raw 
data files generated from the workflow execution. To analyze 
these raw data file contents, the user has to write a program or use 
specific data analyses tools [11,12], which are disconnected from 
the data derivation path and other provenance data.  

The second issue refers to the difficulty in representing semantics 
of domain data, so they can be accessed. This occurs more 
frequently in fine-grain provenance capture. In most fine-grain 
representations, data is typically captured at the operating system 
level, which generates a data deluge and these provenance traces 
are very difficult to be queried. However, independent of 
provenance granularity, it is not simple to address domain-specific 
data from provenance traces in query specification. To improve 
domain data provenance query capabilities, LabelFlow [5] 
suggests adding annotations/labels to data artifacts from 
provenance traces. However, these labels are added only after the 
provenance trace is generated. In a large-scale parallel 
environment, runtime provenance queries are often required to 
monitor, debug and steer the workflow execution [6].  

The approach we have been taking lies in adopting an 
intermediate provenance representation level between coarse and 
fine grain provenance capture [13]. In addition to workflow coarse 
grain data artifacts, special domain data are selected by the user to 
be represented in provenance traces. Domain data capture 
activities are included in the workflow definition so that these 
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domain data values get to be related to other provenance data. Just 
like debugging and execution profiling tools, the user sets which 
domain data values should be registered for further inspection. 
This setting may be driven by the PrIME methodology [14], 
which presents a systematic approach with phases that help 
guiding the user in defining the provenance queries that would 
then define relevant domain data values to be captured.  

In [15] we presented the PROV-Wf model, which is a W3C 
PROV-DM [16] specialization. PROV-Wf models generic 
workflow provenance, domain-specific data and execution data, 
all related in the same model. ProvONE [17] is also a PROV 
extension to represent scientific workflow classes, but 
representing and addressing domain data seems to remain an open 
issue in ProvONE. We believe that there should be more efforts 
towards these provenance representations, particularly with 
respect to domain data extraction, representation and queries to 
improve scientific analyses and provenance data interoperability. 
However, the answer to how much domain data should be in 
provenance databases remains an open issue. It depends on the 
analytical target of the user and the overhead in collecting the 
corresponding data. In this work, we present our efforts in this 
direction by showing extensions to our PROV-Wf model to 
improve domain-data management; show the power of data 
analytics in provenance queries; and discuss current challenges 
also in light of the state of the art proposals. 

This paper is organized as follows. Section 2 discusses related 
work. Section 3 presents PROV-Wf extensions and analyzes its 
concepts with respect to the ProvONE data model. Section 4 
shows queries from a case study based on the instantiation of 
PROV-Wf in a real workflow. Finally Section 5 concludes this 
paper and points out future work. 

2. RELATED WORK 
In this section, we analyze related work on the provenance 
management issues involved in domain data capture, 
representation and queries. Provenance capture in different levels 
of granularity has been addressed by many related work [8], [9], 
[10]. However, the role of domain data has not been very much 
discussed in workflow provenance representation. We are 
particularly concerned with relevant domain data from raw data 
file contents, "hidden" from the provenance management system. 
Yet, to improve scientific data analysis, these domain data values 
must appear explicitly in the provenance trace; and these values 
have to be addressable by a provenance query language. The 
following papers address issues of domain data provenance 
capture. Due to similarities in scientific workflow modeling 
between PROV-Wf and the ProvONE [17] data model proposal 
for scientific workflow provenance, we left it to be discussed in 
more detail on Section 3.  Nevertheless, we did not find any 
related work discussing domain-specific data storage and 
querying in provenance for large-scale systems.  

In [9] the authors show the impact of the provenance capture 
method on the resulting provenance trace. They show that this 
difference in capturing methods makes it difficult to find 
equivalent tasks or data. In our work, we share the same concerns 
towards interoperability of provenance traces and include an 
additional effort to capture and represent domain-specific data in 
provenance traces, so that domain-data provenance queries 
become more uniform. 

Perm [18] is a provenance system which also considers the 
importance of having domain-specific data and provenance data 
all in the same model and database. For example, Glavic et al. 
[19] present some SQL queries (for types Why, Where and How) 
using Perm for analyzing domain-specific data associated to 
provenance data. However, Perm is focused on database SQL 
query provenance, where relational algebraic transformations 
generate data that is naturally represented in databases. Therefore, 
combining domain data with provenance data in relational 
databases seems more natural. In the case of scientific workflows, 
domain data is typically in raw data files, which are not suited to 
be loaded in structured databases. Still there should be an effort in 
selecting some of this raw data to be captured, structured and 
related to their corresponding provenance data, all represented in 
the same model and stored in a single provenance database. The 
same advantages of having complex queries with optimizations 
from relational database systems mentioned by Glavic and Alonso 
in [18]  apply here.  

SPADE [10] also focus on having user input to select relevant 
domain data to be captured to obtain a provenance database that 
lies between coarse and fine grain provenance. SPADE allows for 
defining restrictions in this domain capture to decrease overheads 
related to storage and querying. In relation to our paper, SPADE 
does not consider data gathering from raw data file contents and 
does not mention provenance query processing at runtime. In the 
scientific workflow scenario of large-scale with parallel 
processing, many raw data files are generated, which need to be 
queried during the workflow evolution.  

3. PROV-WF DATA MODEL  
It is well-known that W3C PROV recommendation [20] allows 
for representing entities, people and processes involved in the 
generation of a piece of data. PROV aims at enabling the 
representation of provenance information in heterogeneous 
environments. PROV-DM is able to model all types of 
provenance, thus not being specific for representing provenance 
of scientific workflows. In this way, we presented PROV-Wf [15] 
as an  extension to PROV-DM to model workflow execution data 
and domain-specific data to improve provenance analysis.  

PROV-Wf is the basis of existing SWfMS, such as Chiron [13] 
and SciCumulus [3] and has been used in several real workflows. 
In this section, we give a brief overview of PROV-Wf and focus 
on its extensions for representing and querying "hidden" domain-
specific data. Recently, another PROV-DM extension has been 
proposed such as ProvONE [17] and it is aimed at being a 
referenced model to scientific workflow provenance systems. 
Therefore, we also include an effort towards identifying common 
aspects between PROV-Wf and ProvONE and discuss open issues 
with respect to domain data.  

PROV-Wf represents prospective and retrospective provenance 
data for scientific workflows. The extended version of PROV-Wf 
is composed of four main parts (Figure 1): the structure of the 
scientific workflow (white classes in the UML class diagram); the 
execution of scientific workflow (dark gray classes); domain data 
(dark gray classes); and the environment configuration (light gray 
classes).  



In this extension of PROV-Wf, a scientific workflow (class 
Workflow) is composed by a set of activities (i.e. class Activity). 
Each activity is associated with a program that implements it 
(class Program). The execution of an activity (class Execute 
Activity) invokes a specific program within a workflow (class 
Program Invocation) consuming a set of parameters (class Field) 
that can be seen as a set of values to be consumed (class Value). 
To express all data that is consumed and produced by an activity 
execution (class Execute Activity), the class Relation represents 
the metadata that describes all explicit data (class Field), i.e. all 
parameters consumed and produced by a specific activity. The 
class Value expresses the value for a specific parameter associated 
to a specific activity execution. Furthermore, each value presents 
a specific data type or structure (class Value Type) that can be a 
file (class File) or domain-specific data (class Domain Data). 
These classes act as generic classes to be specialized by domain 
data classes, having names of relations and attributes that are 
defined by the user. PROV-Wf also considers that a program can 
be triggered by an activity execution in order to collect domain-
specific data from produced raw data files. This program 
invocation is described by an extractor execution (class Execute 
Extractor), which consumes a raw data file and produces domain-
specific data. These extracted domain data values are loaded into 
domain specific relations. According to the environment 
configuration, each activity execution gathers information about 
computational resources (class Machine) and the users that 
invoked a specific activity or program (class Scientist). With the 
class Machine, we consider that information about computational 
resources need to be gathered during the workflow execution, 
once the user may need to query about the machine configuration 
to compare different workflow executions. 

In the same way, ProvONE proposes an extension of PROV data 
model also representing prospective and retrospective scientific 
workflow provenance. ProvONE is composed by a set of classes 
that represent both the structure of the workflow and the 
consumed and produced data. In ProvONE, the various tasks that 
are part of a specific workflow are represented by the class 
Program. These programs are single ones or can be composed of 

other programs (i.e. composite). A specific composite program is 
defined as a Workflow. Each Program has one or more Ports 
(input or output) to represent data that is consumed and produced. 
These ports are connected through PROV Locations. The program 
executions of a specific workflow are represented in ProvONE 
using the class Execution. The instances of the class Execution 
represent the execution of a program (that can be a workflow), 
and are associated with a User that performs the execution. 
Representing execution data, such as begin time and end time of a 
program execution is found in both PROV-Wf and ProvONE. 
These are important information for workflow data analytics 
related with provenance classes, as shown in the domain data 
queries of the next section.  

In ProvONE, for each execution a series of input Data items are 
read from the input Ports and are used to generate a series of 
output Data items sent through the output Ports. The types of 
outputs are Data, Visualization, or Document items. The class 
Data represents data of various types. Visualization is a 
differentiated class intended to represent images produced as 
output from workflows. The Document class is a generic 
representation of a published or unpublished article of a given 
execution of the workflow. A Collection class may in turn 
represent a set of the previously mentioned output types.  

While ProvONE represents file tracing between program 
executions, the extended version of PROV-Wf adds selected 
domain data extracted from these files, keeping the derivation 
relationship between files and elements from the files. Another 
difference between PROV-Wf and ProvONE is related to the 
Activity class. ProvONE presents a workflow as a composition of 
programs, while PROV-Wf specifies a workflow by a set of 
activities that are in turn associated with programs. Each activity 
presents one or more program in its specification, whose 
definition is represented by the relationship wasAssociatedWith 
between Activity and Program classes. Thus, we believe that 
activity and program are different concepts and should to be 
modeled in different classes. This use of the class Activity also 
keeps PROV-Wf compatible with PROV-DM. 

Figure 1. Extended version of PROV-Wf data model from [15]  



4. PUTTING A UNIFIED PROVENANCE 
MODEL IN PRACTICE 
This section aims at presenting the potential of the extended 
version of PROV-Wf, which integrates data about workflow 
structure, workflow execution, and domain data. We present an 
instantiation of PROV-Wf classes in a provenance relational 
database of a SWfMS, for SciPhy [7], a bioinformatics workflow 
for phylogenetic analyses that aims at producing phylogenetic 
trees to represent existing evolutionary relationships. Then, we 
present some provenance queries involving data from workflow 
structure, execution, and domain.  

In the instantiated provenance relational database schema1, each 
table is associated with a class of PROV-Wf model. The 
mappings between PROV-Wf classes and the provenance 
relational schema are presented in Table 1. Each row in Table 1 
has a background color, and each color is associated with a 
specific type of table in the relation schema: tables associated to 
workflow representation or environment configuration (white); 
tables generated for representing consumed and produced data by 
each activity (light gray); and tables for extracted domain-specific 
data (dark gray). 

A workflow (table cworkflow) is composed of one or more 
activities, which present information about program invocation, 
domain data extraction and some additional operations for joining 
results (respectively, tables cactivity, cextractor, coperand and 
cjoin). Each activity is represented by the consumption and 
production of some relations (table crelation), which present some 
data dependencies (table cmapping) with fields (table cfield) from 
other relations. The value type of each field is also specified in 
table cfield.  

Table 1.  PROV-Wf classes in a provenance database 

PROV-Wf class Table 
Workflow cworkflow 
Activity cactivity, coperand, cextractor, cjoin 
Relation crelation, cmapping 
Field cfield 
Program eactivity 
Execute workflow eworkflow 
Execute activity eactivity 
Execute extractor eactivation 
Machine emachine 
Scientist - 
Program invocation eactivation 
File efile 
Value idataselection, odataselection, omafft, oreadseq, 

omodelgenerator, oraxml1, oraxml2, 
omergeraxml, oraxml3 

Value type cfield 
Domain Data dlmafft, dlreadseq, dlmodelgenerator, dlraxml1, 

dlraxml2, dlmergeraxml, dlraxml3 
 

Considering workflow execution (tables eworkflow), provenance 
data about activity executions are stored in table eactivity, such as 
program specifications. Meanwhile, data about program 
invocation and extractor execution are stored in table eactivation. 
For environment configuration, our relational database stores 
properties about computational resources in table emachine. 
Currently, class Scientist is not represented in the provenance 
relational database yet. 

                                                                    
1 http://cos.ufrj.br/~silva/relational-database-schema-SCC.png 

The highlighted lines in Table 1 show classes related to domain-
specific data and the tables that instantiate theses classes have 
names given by the user while modeling the workflow. In this 
case, it shows tables and attributes corresponding to the SciPhy 
workflow, presented in Figure 2. Data dependencies are 
represented by arrows between activities in Figure 2 and 
implement Influence component in PROV-DM. These tables have 
the same name of the workflow specification (e.g. table 
idataselection). The produced domain-specific files are stored in 
table efile, while the extracted domain data is stored in tables for 
extracted values, such as dlmafft.  

 
Figure 2. SciPhy workflow 

Based on this provenance relational schema, we discuss a few 
queries that take advantage of the integrated provenance database, 
particularly with domain data. In the first query, users may need 
to identify where are the produced files of each task that runs the 
ModelGenerator program and present the average execution time 
higher than 3 standard deviations. This will define the region of 
the parameter space to be investigated. This query is presented in 
Figure 3. This query can be classified in the types WHERE and 
WHEN from Buneman et al. [21] classification of provenance 
queries. These types of query can be performed in most of the 
provenance databases, independent if they follow the PROV-Wf, 
ProvONE, or others that combine execution data with generic 
provenance data.  

In a parallel execution, as it is the case of the SciPhy workflow, 
input data is partitioned and several program instances are 
executed as parallel tasks. Users often need more than file names 
to evaluate what is “going on” with some parallel tasks. They 
commonly have to analyze the content of files, i.e. domain-
specific data. If each task with anomalous execution time 
produces many files, it may be hard for users to browse all files to 
parse domain-specific data within them. This browsing task may 
be hard, tedious and error-prone. For example, in a real execution 
of SciPhy, for 200 input files, one tuple is inserted in eworkflow 
table, eight corresponding tuples in eactivity, 1,406 in eactivation, 
9 in crelation, 19,419 in efile, and 1,290 in domain tables.  This 
gives an idea of the number of files that are generated. To select 
the corresponding file name that presents a bootstrap value greater 
than a threshold, it would require creating a specific program for 
opening and parsing the required files for this analysis. This 
would be just part of the single raw data file analysis. The user 
might also want to trace the corresponding files (and some of their 
attributes) generated by the next activities that received these 
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"selected" bootstrap values as input. This analysis, when 
complemented with execution time behavior is important for the 
trials involving the workflow configuration exploration or 
debugging. Before achieving a final configuration, this workflow 
execution trial might show that some of the parameters on this 
workflow configuration were not adequate for this specific input 
dataset and the execution must be interrupted for another trial.  
Some more specific analytical queries are shown as follows.  

 
Figure 3. Query from categories where and when 

Figure 4 presents a typical analysis that the user does in SciPhy. 
One way of knowing if a specific task is presenting anomalous 
behavior is having the users analyzing the number of alignments 
produced in the alignment activity. This number is used as input 
for ModelGenerator (attribute num_aligns), and allows obtaining 
the length of the biggest sequence in the dataset (attribute length) 
and the evolutionary model used to infer the evolutionary 
relationships among sequences (attribute model1).  Note that 
attributes length and num_aligns were extracted from data files of 
the previous activities of the workflow and then propagated to the 
input relation of ModelGenerator activity. This allows for 
analyzing domain-specific data elements using its data derivation 
path.  

 
Figure 4. Query from categories when and why 

In addition, users may need to investigate a more restricted 
parameter space. Thus, they normally need to reduce their 
parameter space by some domain-specific data. For example, 
users may analyze only the best scores (attribute bestscore) that 
present a bootstrap greater or equal to 25 and an alignment length 
greater than 60 in SciPhy, as presented in Figure 5.  

5. CONCLUSION 
Provenance models are domain agnostic. However, most 
analytical queries in scientific workflow data involve domain-
specific concepts. In this work we discuss some provenance 
representation alternatives towards defining a provenance data 
model, which represents domain-specific data explicitly in the 
provenance trace and addresses domain-specific data by a 
provenance query language. To avoid the extremes of coarse 
versus fine grain provenance capture our approach lets the user 
indicate which and how much domain data should be captured, 
while the system automatically captures and represents them with 
the generic provenance data. However, ideally the system should 
suggest which data and evaluate how much data capture would 
penalize the performance and storage of workflow execution in 
light of the benefits in data analytics. 

We presented an extended version of our PROV-Wf model with 
the purpose of supporting the issues of domain data provenance. 
We propose some new classes including the domain-specific data 
(Domain Data class), where the user chooses the attribute and 
relation names, the different domain-data value types (Value Type 
class), and the extraction of domain-specific data from raw data 
files (Execute Extractor class). By addressing these classes on the 
provenance database, the user, in our bioinformatics example, 
may obtain domain data values for the number of alignments 
resulting from activity "model generator" with a specific filter. 
Otherwise, the user would have to obtain the corresponding output 
files and open them to extract the number of alignments. 
However, we believe that there should be a joint effort towards 
domain aware provenance data models so that provenance queries 
improve the analytical power at the same time it may interoperate 
with different provenance databases. 

 
Figure 5. Query from categories where, when and why 
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SELECT t.taskid, f.fdir, f.fname 
FROM eactivity a, eactivation t, efile f 
WHERE a.actid = t.actid 
AND t.taskid = f.taskid 
AND a.tag = 'modelgenerator' 
AND round(cast (extract(epoch from (t.endtime - t.starttime)) AS                
numeric),2) >  
       ( 

SELECT (avg(round(cast (extract(epoch from (t.endtime - 
t.starttime)) AS numeric),2)) + 3*stddev(round(cast (extract(epoch 
from (t.endtime - t.starttime)) AS numeric),2))) as threshold 

       FROM eactivity a, eactivation t 
       WHERE a.actid = t.actid 
       AND a.tag = 'modelgenerator' 
       ); 

SELECT t.taskid, dlmg.model1, dlrs.num_aligns, 
dlrs.length 

FROM eactivity a, eactivation t, sciphy.omodelgenerator omg,  
sciphy.dlmodelgenerator dlmg, sciphy.dlreadseq dlrs 

WHERE a.actid = t.actid 
AND a.tag = 'modelgenerator' 
AND omg.previoustaskid = t.taskid 
AND omg.dlmodelgeneratorid = dlmg.rid 
AND omg.dlreadseqid = dlrs.rid 
AND round(cast (extract(epoch from (t.endtime - t.starttime)) AS 
numeric),2) >  

( 
SELECT (avg(round(cast (extract(epoch from (t.endtime - 
t.starttime)) AS numeric),2)) + 3*stddev(round(cast (extract(epoch 
from (t.endtime - t.starttime)) AS numeric),2))) as threshold 
FROM eactivity a, eactivation t 
WHERE a.actid = t.actid 
AND a.tag = 'modelgenerator' 
); 

SELECT t.taskid, dlr1.besttree 
FROM eactivity a, eactivation t, sciphy.oraxml3 or3,  
          sciphy.dlraxml3 dlr3, sciphy.dlreadseq dlrs,sciphy.dlraxml1 dlr1 
WHERE a.actid = t.actid 
AND a.tag = 'raxml3' 
AND or3.taskid = t.taskid 
AND or3.dlraxml3id = dlr3.rid 
AND or3.dlraxml1id = dlr1.rid 
AND dlr3.minbootstrap >= 25 
AND dlrs.length > 60 
AND round(cast (extract(epoch from (t.endtime - t.starttime)) AS 
numeric),2) >  

(SELECT  
(avg(round(cast (extract(epoch from (t.endtime - t.starttime)) AS 
numeric),2)) +  
3*stddev(round(cast (extract 
(epoch from (t.endtime - t.starttime)) AS numeric),2))) as 
threshold 
FROM eactivity a, eactivation t 
WHERE a.actid = t.actid 
AND a.tag = 'modelgenerator') 
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