
How much domain data should be
in provenance databases?

Daniel de Oliveira
Instituto de Computação

Universidade Federal Fluminense
Niterói, Brazil

danielcmo@ic.uff.br

Vítor Silva
COPPE

Federal University of Rio de Janeiro
Rio de Janeiro, Brazil
silva@cos.ufrj.br

Marta Mattoso
COPPE

Federal University of Rio de Janeiro
Rio de Janeiro, Brazil
marta@cos.ufrj.br

ABSTRACT
Provenance databases are an important asset in data analytics of
large-scale scientific data. The data derivation path allows for
identifying parameters, files and domain data values of interest. In
scientific workflows, provenance data is automatically captured
by workflow systems. However, the power of provenance data
analyses depends on the expressiveness of domain-specific data
along the provenance traces. While much has been done through
the W3C PROV initiative and its PROV-DM to represent generic
provenance data, representing domain-specific data in provenance
traces has received little attention, yet it accounts for a large
number of provenance analytical queries. Such queries are based
on selections on data values from input/output artifacts along
workflow activities. There are several problems in modeling and
capturing values from domain-specific attributes, some of them
are related to managing provenance granularity, others to
addressing data values hidden inside files and representing the
semantics of domain data. In this work, we discuss these open
issues and propose some alternatives to domain-specific
provenance data capture, representation, storage and queries.
Addressing these issues may be decisive in using provenance to
drive scientific data analyses at large-scale.

1. INTRODUCTION
Scientific Workflow Management Systems (SWfMS) have been
helping on several scientific data analysis. SWfMS with parallel
processing such as Pegasus [1], Swift/T [2] and SciCumulus [3],
automatically partition data input and manage the dataflow
generation in parallel processing data at large scale, in clusters or
clouds. In addition to providing a high scalability, parallel
SWfMS systems can improve scientific data analyses through
provenance database query support. Provenance data from
scientific workflows represent the data derivation path, which
allows for identifying parameters, files and domain data values of
interest [4].

Domain-specific data analysis account for most of provenance
queries found in the Provenance Challenge series and in reports
with real scientific workflows [5,6]. The data analytical power of
provenance depends on the expressiveness of domain data in
provenance traces. For example, in bioinformatics (e.g. SciPhy, a
workflow for Phylogenetic analysis [7]), workflows may involve
genome sequence similarity analysis programs that register the
resulting similarity value inside an output file. In this case, the

required domain data value is outside the scope of the workflow
provenance traces. As observed by Alper et al. [5], many
provenance queries are based on data values that are "assumed" to
exist. Even when they do exist, in the provenance trace, it may be
difficult to reference domain-specific data in a query. There are
several open issues in querying domain data from provenance
databases. Basically these challenges are related to domain data
values that must appear explicitly in the provenance trace; and
values that have to be addressable by a provenance query
language, i.e., there must be an access path to be used in searching
for the required domain value. We discuss these two issues as
follows.

The first issue is related to defining how much domain data
should be represented in provenance traces. This is highly related
to provenance granularity, which has been discussed in several
papers, such as: [8], [9], [10]. Provenance in coarse grain is
represented generically as input artifacts transformed by activities
that generate output artifacts. Individual domain-data values are
not represented in coarse-grain, unless they are explicitly defined
as an activity output. Many relevant domain-specific values are
"hidden" inside input/output raw data files. In this case,
provenance database queries may just obtain a specific file
identifier. Then, this file has to be further analyzed, based on its
contents. In this scenario, provenance data acts as pointers to raw
data files generated from the workflow execution. To analyze
these raw data file contents, the user has to write a program or use
specific data analyses tools [11,12], which are disconnected from
the data derivation path and other provenance data.

The second issue refers to the difficulty in representing semantics
of domain data, so they can be accessed. This occurs more
frequently in fine-grain provenance capture. In most fine-grain
representations, data is typically captured at the operating system
level, which generates a data deluge and these provenance traces
are very difficult to be queried. However, independent of
provenance granularity, it is not simple to address domain-specific
data from provenance traces in query specification. To improve
domain data provenance query capabilities, LabelFlow [5]
suggests adding annotations/labels to data artifacts from
provenance traces. However, these labels are added only after the
provenance trace is generated. In a large-scale parallel
environment, runtime provenance queries are often required to
monitor, debug and steer the workflow execution [6].

The approach we have been taking lies in adopting an
intermediate provenance representation level between coarse and
fine grain provenance capture [13]. In addition to workflow coarse
grain data artifacts, special domain data are selected by the user to
be represented in provenance traces. Domain data capture
activities are included in the workflow definition so that these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
TaPP’15, July 8–9, 2015, Edinburgh, Lothian, Scotland.
Copyright remains with the owner/author(s).

domain data values get to be related to other provenance data. Just
like debugging and execution profiling tools, the user sets which
domain data values should be registered for further inspection.
This setting may be driven by the PrIME methodology [14],
which presents a systematic approach with phases that help
guiding the user in defining the provenance queries that would
then define relevant domain data values to be captured.

In [15] we presented the PROV-Wf model, which is a W3C
PROV-DM [16] specialization. PROV-Wf models generic
workflow provenance, domain-specific data and execution data,
all related in the same model. ProvONE [17] is also a PROV
extension to represent scientific workflow classes, but
representing and addressing domain data seems to remain an open
issue in ProvONE. We believe that there should be more efforts
towards these provenance representations, particularly with
respect to domain data extraction, representation and queries to
improve scientific analyses and provenance data interoperability.
However, the answer to how much domain data should be in
provenance databases remains an open issue. It depends on the
analytical target of the user and the overhead in collecting the
corresponding data. In this work, we present our efforts in this
direction by showing extensions to our PROV-Wf model to
improve domain-data management; show the power of data
analytics in provenance queries; and discuss current challenges
also in light of the state of the art proposals.

This paper is organized as follows. Section 2 discusses related
work. Section 3 presents PROV-Wf extensions and analyzes its
concepts with respect to the ProvONE data model. Section 4
shows queries from a case study based on the instantiation of
PROV-Wf in a real workflow. Finally Section 5 concludes this
paper and points out future work.

2. RELATED WORK
In this section, we analyze related work on the provenance
management issues involved in domain data capture,
representation and queries. Provenance capture in different levels
of granularity has been addressed by many related work [8], [9],
[10]. However, the role of domain data has not been very much
discussed in workflow provenance representation. We are
particularly concerned with relevant domain data from raw data
file contents, "hidden" from the provenance management system.
Yet, to improve scientific data analysis, these domain data values
must appear explicitly in the provenance trace; and these values
have to be addressable by a provenance query language. The
following papers address issues of domain data provenance
capture. Due to similarities in scientific workflow modeling
between PROV-Wf and the ProvONE [17] data model proposal
for scientific workflow provenance, we left it to be discussed in
more detail on Section 3. Nevertheless, we did not find any
related work discussing domain-specific data storage and
querying in provenance for large-scale systems.

In [9] the authors show the impact of the provenance capture
method on the resulting provenance trace. They show that this
difference in capturing methods makes it difficult to find
equivalent tasks or data. In our work, we share the same concerns
towards interoperability of provenance traces and include an
additional effort to capture and represent domain-specific data in
provenance traces, so that domain-data provenance queries
become more uniform.

Perm [18] is a provenance system which also considers the
importance of having domain-specific data and provenance data
all in the same model and database. For example, Glavic et al.
[19] present some SQL queries (for types Why, Where and How)
using Perm for analyzing domain-specific data associated to
provenance data. However, Perm is focused on database SQL
query provenance, where relational algebraic transformations
generate data that is naturally represented in databases. Therefore,
combining domain data with provenance data in relational
databases seems more natural. In the case of scientific workflows,
domain data is typically in raw data files, which are not suited to
be loaded in structured databases. Still there should be an effort in
selecting some of this raw data to be captured, structured and
related to their corresponding provenance data, all represented in
the same model and stored in a single provenance database. The
same advantages of having complex queries with optimizations
from relational database systems mentioned by Glavic and Alonso
in [18] apply here.

SPADE [10] also focus on having user input to select relevant
domain data to be captured to obtain a provenance database that
lies between coarse and fine grain provenance. SPADE allows for
defining restrictions in this domain capture to decrease overheads
related to storage and querying. In relation to our paper, SPADE
does not consider data gathering from raw data file contents and
does not mention provenance query processing at runtime. In the
scientific workflow scenario of large-scale with parallel
processing, many raw data files are generated, which need to be
queried during the workflow evolution.

3. PROV-WF DATA MODEL
It is well-known that W3C PROV recommendation [20] allows
for representing entities, people and processes involved in the
generation of a piece of data. PROV aims at enabling the
representation of provenance information in heterogeneous
environments. PROV-DM is able to model all types of
provenance, thus not being specific for representing provenance
of scientific workflows. In this way, we presented PROV-Wf [15]
as an extension to PROV-DM to model workflow execution data
and domain-specific data to improve provenance analysis.

PROV-Wf is the basis of existing SWfMS, such as Chiron [13]
and SciCumulus [3] and has been used in several real workflows.
In this section, we give a brief overview of PROV-Wf and focus
on its extensions for representing and querying "hidden" domain-
specific data. Recently, another PROV-DM extension has been
proposed such as ProvONE [17] and it is aimed at being a
referenced model to scientific workflow provenance systems.
Therefore, we also include an effort towards identifying common
aspects between PROV-Wf and ProvONE and discuss open issues
with respect to domain data.

PROV-Wf represents prospective and retrospective provenance
data for scientific workflows. The extended version of PROV-Wf
is composed of four main parts (Figure 1): the structure of the
scientific workflow (white classes in the UML class diagram); the
execution of scientific workflow (dark gray classes); domain data
(dark gray classes); and the environment configuration (light gray
classes).

In this extension of PROV-Wf, a scientific workflow (class
Workflow) is composed by a set of activities (i.e. class Activity).
Each activity is associated with a program that implements it
(class Program). The execution of an activity (class Execute
Activity) invokes a specific program within a workflow (class
Program Invocation) consuming a set of parameters (class Field)
that can be seen as a set of values to be consumed (class Value).
To express all data that is consumed and produced by an activity
execution (class Execute Activity), the class Relation represents
the metadata that describes all explicit data (class Field), i.e. all
parameters consumed and produced by a specific activity. The
class Value expresses the value for a specific parameter associated
to a specific activity execution. Furthermore, each value presents
a specific data type or structure (class Value Type) that can be a
file (class File) or domain-specific data (class Domain Data).
These classes act as generic classes to be specialized by domain
data classes, having names of relations and attributes that are
defined by the user. PROV-Wf also considers that a program can
be triggered by an activity execution in order to collect domain-
specific data from produced raw data files. This program
invocation is described by an extractor execution (class Execute
Extractor), which consumes a raw data file and produces domain-
specific data. These extracted domain data values are loaded into
domain specific relations. According to the environment
configuration, each activity execution gathers information about
computational resources (class Machine) and the users that
invoked a specific activity or program (class Scientist). With the
class Machine, we consider that information about computational
resources need to be gathered during the workflow execution,
once the user may need to query about the machine configuration
to compare different workflow executions.

In the same way, ProvONE proposes an extension of PROV data
model also representing prospective and retrospective scientific
workflow provenance. ProvONE is composed by a set of classes
that represent both the structure of the workflow and the
consumed and produced data. In ProvONE, the various tasks that
are part of a specific workflow are represented by the class
Program. These programs are single ones or can be composed of

other programs (i.e. composite). A specific composite program is
defined as a Workflow. Each Program has one or more Ports
(input or output) to represent data that is consumed and produced.
These ports are connected through PROV Locations. The program
executions of a specific workflow are represented in ProvONE
using the class Execution. The instances of the class Execution
represent the execution of a program (that can be a workflow),
and are associated with a User that performs the execution.
Representing execution data, such as begin time and end time of a
program execution is found in both PROV-Wf and ProvONE.
These are important information for workflow data analytics
related with provenance classes, as shown in the domain data
queries of the next section.

In ProvONE, for each execution a series of input Data items are
read from the input Ports and are used to generate a series of
output Data items sent through the output Ports. The types of
outputs are Data, Visualization, or Document items. The class
Data represents data of various types. Visualization is a
differentiated class intended to represent images produced as
output from workflows. The Document class is a generic
representation of a published or unpublished article of a given
execution of the workflow. A Collection class may in turn
represent a set of the previously mentioned output types.

While ProvONE represents file tracing between program
executions, the extended version of PROV-Wf adds selected
domain data extracted from these files, keeping the derivation
relationship between files and elements from the files. Another
difference between PROV-Wf and ProvONE is related to the
Activity class. ProvONE presents a workflow as a composition of
programs, while PROV-Wf specifies a workflow by a set of
activities that are in turn associated with programs. Each activity
presents one or more program in its specification, whose
definition is represented by the relationship wasAssociatedWith
between Activity and Program classes. Thus, we believe that
activity and program are different concepts and should to be
modeled in different classes. This use of the class Activity also
keeps PROV-Wf compatible with PROV-DM.

Figure 1. Extended version of PROV-Wf data model from [15]

4. PUTTING A UNIFIED PROVENANCE
MODEL IN PRACTICE
This section aims at presenting the potential of the extended
version of PROV-Wf, which integrates data about workflow
structure, workflow execution, and domain data. We present an
instantiation of PROV-Wf classes in a provenance relational
database of a SWfMS, for SciPhy [7], a bioinformatics workflow
for phylogenetic analyses that aims at producing phylogenetic
trees to represent existing evolutionary relationships. Then, we
present some provenance queries involving data from workflow
structure, execution, and domain.

In the instantiated provenance relational database schema1, each
table is associated with a class of PROV-Wf model. The
mappings between PROV-Wf classes and the provenance
relational schema are presented in Table 1. Each row in Table 1
has a background color, and each color is associated with a
specific type of table in the relation schema: tables associated to
workflow representation or environment configuration (white);
tables generated for representing consumed and produced data by
each activity (light gray); and tables for extracted domain-specific
data (dark gray).

A workflow (table cworkflow) is composed of one or more
activities, which present information about program invocation,
domain data extraction and some additional operations for joining
results (respectively, tables cactivity, cextractor, coperand and
cjoin). Each activity is represented by the consumption and
production of some relations (table crelation), which present some
data dependencies (table cmapping) with fields (table cfield) from
other relations. The value type of each field is also specified in
table cfield.

Table 1. PROV-Wf classes in a provenance database

PROV-Wf class Table
Workflow cworkflow
Activity cactivity, coperand, cextractor, cjoin
Relation crelation, cmapping
Field cfield
Program eactivity
Execute workflow eworkflow
Execute activity eactivity
Execute extractor eactivation
Machine emachine
Scientist -
Program invocation eactivation
File efile
Value idataselection, odataselection, omafft, oreadseq,

omodelgenerator, oraxml1, oraxml2,
omergeraxml, oraxml3

Value type cfield
Domain Data dlmafft, dlreadseq, dlmodelgenerator, dlraxml1,

dlraxml2, dlmergeraxml, dlraxml3

Considering workflow execution (tables eworkflow), provenance
data about activity executions are stored in table eactivity, such as
program specifications. Meanwhile, data about program
invocation and extractor execution are stored in table eactivation.
For environment configuration, our relational database stores
properties about computational resources in table emachine.
Currently, class Scientist is not represented in the provenance
relational database yet.

1 http://cos.ufrj.br/~silva/relational-database-schema-SCC.png

The highlighted lines in Table 1 show classes related to domain-
specific data and the tables that instantiate theses classes have
names given by the user while modeling the workflow. In this
case, it shows tables and attributes corresponding to the SciPhy
workflow, presented in Figure 2. Data dependencies are
represented by arrows between activities in Figure 2 and
implement Influence component in PROV-DM. These tables have
the same name of the workflow specification (e.g. table
idataselection). The produced domain-specific files are stored in
table efile, while the extracted domain data is stored in tables for
extracted values, such as dlmafft.

Figure 2. SciPhy workflow

Based on this provenance relational schema, we discuss a few
queries that take advantage of the integrated provenance database,
particularly with domain data. In the first query, users may need
to identify where are the produced files of each task that runs the
ModelGenerator program and present the average execution time
higher than 3 standard deviations. This will define the region of
the parameter space to be investigated. This query is presented in
Figure 3. This query can be classified in the types WHERE and
WHEN from Buneman et al. [21] classification of provenance
queries. These types of query can be performed in most of the
provenance databases, independent if they follow the PROV-Wf,
ProvONE, or others that combine execution data with generic
provenance data.

In a parallel execution, as it is the case of the SciPhy workflow,
input data is partitioned and several program instances are
executed as parallel tasks. Users often need more than file names
to evaluate what is “going on” with some parallel tasks. They
commonly have to analyze the content of files, i.e. domain-
specific data. If each task with anomalous execution time
produces many files, it may be hard for users to browse all files to
parse domain-specific data within them. This browsing task may
be hard, tedious and error-prone. For example, in a real execution
of SciPhy, for 200 input files, one tuple is inserted in eworkflow
table, eight corresponding tuples in eactivity, 1,406 in eactivation,
9 in crelation, 19,419 in efile, and 1,290 in domain tables. This
gives an idea of the number of files that are generated. To select
the corresponding file name that presents a bootstrap value greater
than a threshold, it would require creating a specific program for
opening and parsing the required files for this analysis. This
would be just part of the single raw data file analysis. The user
might also want to trace the corresponding files (and some of their
attributes) generated by the next activities that received these

oraxml2

Data$Selec)on!

Ma-$

Read$Sequence$

Model$Generator$

RAxML1

RAxML2

Merge$Results$

RAxML3

idataselection

odataselection

omafft

oreadseq

omodelgenerator

oraxml1

omergeresults

oraxml3 Labels:(
((ac*vity(
((dependency(

"selected" bootstrap values as input. This analysis, when
complemented with execution time behavior is important for the
trials involving the workflow configuration exploration or
debugging. Before achieving a final configuration, this workflow
execution trial might show that some of the parameters on this
workflow configuration were not adequate for this specific input
dataset and the execution must be interrupted for another trial.
Some more specific analytical queries are shown as follows.

Figure 3. Query from categories where and when

Figure 4 presents a typical analysis that the user does in SciPhy.
One way of knowing if a specific task is presenting anomalous
behavior is having the users analyzing the number of alignments
produced in the alignment activity. This number is used as input
for ModelGenerator (attribute num_aligns), and allows obtaining
the length of the biggest sequence in the dataset (attribute length)
and the evolutionary model used to infer the evolutionary
relationships among sequences (attribute model1). Note that
attributes length and num_aligns were extracted from data files of
the previous activities of the workflow and then propagated to the
input relation of ModelGenerator activity. This allows for
analyzing domain-specific data elements using its data derivation
path.

Figure 4. Query from categories when and why

In addition, users may need to investigate a more restricted
parameter space. Thus, they normally need to reduce their
parameter space by some domain-specific data. For example,
users may analyze only the best scores (attribute bestscore) that
present a bootstrap greater or equal to 25 and an alignment length
greater than 60 in SciPhy, as presented in Figure 5.

5. CONCLUSION
Provenance models are domain agnostic. However, most
analytical queries in scientific workflow data involve domain-
specific concepts. In this work we discuss some provenance
representation alternatives towards defining a provenance data
model, which represents domain-specific data explicitly in the
provenance trace and addresses domain-specific data by a
provenance query language. To avoid the extremes of coarse
versus fine grain provenance capture our approach lets the user
indicate which and how much domain data should be captured,
while the system automatically captures and represents them with
the generic provenance data. However, ideally the system should
suggest which data and evaluate how much data capture would
penalize the performance and storage of workflow execution in
light of the benefits in data analytics.

We presented an extended version of our PROV-Wf model with
the purpose of supporting the issues of domain data provenance.
We propose some new classes including the domain-specific data
(Domain Data class), where the user chooses the attribute and
relation names, the different domain-data value types (Value Type
class), and the extraction of domain-specific data from raw data
files (Execute Extractor class). By addressing these classes on the
provenance database, the user, in our bioinformatics example,
may obtain domain data values for the number of alignments
resulting from activity "model generator" with a specific filter.
Otherwise, the user would have to obtain the corresponding output
files and open them to extract the number of alignments.
However, we believe that there should be a joint effort towards
domain aware provenance data models so that provenance queries
improve the analytical power at the same time it may interoperate
with different provenance databases.

Figure 5. Query from categories where, when and why

6. ACKNOWLEDGMENTS
We thank Kary Ocaña for her help on configuring and executing
SciPhy programs. We also acknowledge the Brazilian funding
agencies CAPES, CNPq and FAPERJ for partially sponsoring this
work and NACAD Center for the parallel computing support.

SELECT t.taskid, f.fdir, f.fname
FROM eactivity a, eactivation t, efile f
WHERE a.actid = t.actid
AND t.taskid = f.taskid
AND a.tag = 'modelgenerator'
AND round(cast (extract(epoch from (t.endtime - t.starttime)) AS
numeric),2) >
 (

SELECT (avg(round(cast (extract(epoch from (t.endtime -
t.starttime)) AS numeric),2)) + 3*stddev(round(cast (extract(epoch
from (t.endtime - t.starttime)) AS numeric),2))) as threshold

 FROM eactivity a, eactivation t
 WHERE a.actid = t.actid
 AND a.tag = 'modelgenerator'
);

SELECT t.taskid, dlmg.model1, dlrs.num_aligns,
dlrs.length

FROM eactivity a, eactivation t, sciphy.omodelgenerator omg,
sciphy.dlmodelgenerator dlmg, sciphy.dlreadseq dlrs

WHERE a.actid = t.actid
AND a.tag = 'modelgenerator'
AND omg.previoustaskid = t.taskid
AND omg.dlmodelgeneratorid = dlmg.rid
AND omg.dlreadseqid = dlrs.rid
AND round(cast (extract(epoch from (t.endtime - t.starttime)) AS
numeric),2) >

(
SELECT (avg(round(cast (extract(epoch from (t.endtime -
t.starttime)) AS numeric),2)) + 3*stddev(round(cast (extract(epoch
from (t.endtime - t.starttime)) AS numeric),2))) as threshold
FROM eactivity a, eactivation t
WHERE a.actid = t.actid
AND a.tag = 'modelgenerator'
);

SELECT t.taskid, dlr1.besttree
FROM eactivity a, eactivation t, sciphy.oraxml3 or3,
 sciphy.dlraxml3 dlr3, sciphy.dlreadseq dlrs,sciphy.dlraxml1 dlr1
WHERE a.actid = t.actid
AND a.tag = 'raxml3'
AND or3.taskid = t.taskid
AND or3.dlraxml3id = dlr3.rid
AND or3.dlraxml1id = dlr1.rid
AND dlr3.minbootstrap >= 25
AND dlrs.length > 60
AND round(cast (extract(epoch from (t.endtime - t.starttime)) AS
numeric),2) >

(SELECT
(avg(round(cast (extract(epoch from (t.endtime - t.starttime)) AS
numeric),2)) +
3*stddev(round(cast (extract
(epoch from (t.endtime - t.starttime)) AS numeric),2))) as
threshold
FROM eactivity a, eactivation t
WHERE a.actid = t.actid
AND a.tag = 'modelgenerator')

7. REFERENCES
[1] J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar.

Provenance trails in the Wings-Pegasus system.
Concurrency and Computation: Practice & Experience,
20:587–597, 2008.

[2] J.M. Wozniak, T.G. Armstrong, M. Wilde, D.S. Katz, E. Lusk,
and I.T. Foster. Swift/T: Large-Scale Application
Composition via Distributed-Memory Dataflow Processing.
Proceedings of the 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 95–102, 2013.

[3] D. Oliveira, E. Ogasawara, F. Baião, and M. Mattoso.
SciCumulus: A Lightweight Cloud Middleware to Explore
Many Task Computing Paradigm in Scientific Workflows.
Proceedings of the 3rd International Conference on Cloud
Computing, 378–385, 2010.

[4] S.B. Davidson and J. Freire. Provenance and Scientific
Workflows: Challenges and Opportunities. ACM SIGMOD
International Conference on Management of Data, 1345–
1350, 2008.

[5] P. Alper, K. Belhajjame, C.A. Goble, and P. Karagoz.
LabelFlow: Exploiting Workflow Provenance to Surface
Scientific Data Provenance. Provenance and Annotation of
Data and Processes, B. Ludäscher and B. Plale, eds.,
Springer International Publishing, 84–96, 2015.

[6] M. Mattoso, J. Dias, K.A.C.S. Ocaña, E. Ogasawara, F. Costa,
F. Horta, V. Silva, and D. de Oliveira. Dynamic steering of
HPC scientific workflows: A survey. Future Generation
Computer Systems, 46:100–113, 2015.

[7] K.A.C.S. Ocaña, D. de Oliveira, E. Ogasawara, A.M.R.
Dávila, A.A.B. Lima, and M. Mattoso. SciPhy: A Cloud-
Based Workflow for Phylogenetic Analysis of Drug Targets
in Protozoan Genomes. Advances in Bioinformatics and
Computational Biology, O.N. de Souza, G.P. Telles, and M.
Palakal, eds., Springer Berlin Heidelberg, 66–70, 2011.

[8] Y.L. Simmhan, B. Plale, and D. Gannon. A Survey of Data
Provenance in e-Science. ACM SIGMOD Record,
34(3):31–36, 2005.

[9] B. Coe, R.C. Doty, M.D. Allen, and A. Chapman. Provenance
Datasets Highlighting Capture Disparities. Proceedings of
the 6th Workshop on the Theory and Practice of Provenance
(TaPP), 2014.

[10] D. Tariq, M. Ali, and A. Gehani. Towards Automated
Collection of Application-Level Data Provenance.
Proceedings of the 4th USENIX Workshop on the Theory
and Practice of Provenance (TaPP), 2012.

[11] M. Karpathiotakis, M. Branco, I. Alagiannis, and A.

Ailamaki. Adaptive Query Processing on RAW Data.
Proceedings of the VLDB Endowment, 7(12):1119–1130,
2014.

[12] J. Chou, K. Wu, and Prabhat. FastQuery: A Parallel Indexing
System for Scientific Data. Proceedings of the 2011 IEEE
International Conference on Cluster Computing
(CLUSTER), 455–464, 2011.

[13] E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez,
and M. Mattoso. An Algebraic Approach for Data-Centric
Scientific Workflows. Proceedings of the 37th International
Conference on Very Large Data Bases (PVLDB),
4(12):1328–1339, 2011.

[14] S. Munroe, S. Miles, L. Moreau, and J. Vázquez-Salceda.
PrIMe: a software engineering methodology for developing
provenance-aware applications. Proceedings of the 6th
international workshop on Software engineering and
middleware, 39–46, 2006.

[15] F. Costa, V. Silva, D. de Oliveira, K. Ocaña, E. Ogasawara,
J. Dias, and M. Mattoso. Capturing and Querying Workflow
Runtime Provenance with PROV: A Practical Approach.
Proceedings of the Joint EDBT/ICDT 2013 Workshops,
282–289, 2013.

[16] L. Moreau and P. Missier. PROV-DM: The PROV Data
Model. Available at: http://www.w3.org/TR/2013/REC-
prov-dm-20130430/ Accessed: 17 Feb 2014., 2013.

[17] ProvONE. Available at: http://jenkins-1.dataone.org/jenkins
[18] B. Arab, D. Gawlick, V. Radhakrishnan, H. Guo, and B.

Glavic. A Generic Provenance Middleware for Queries,
Updates, and Transactions. Proceedings of the 6th
Workshop on the Theory and Practice of Provenance
(TaPP), 2014.

[19] B. Glavic, R.J. Miller, and G. Alonso. Using SQL for
Efficient Generation and Querying of Provenance
Information. In Search of Elegance in the Theory and
Practice of Computation, V. Tannen, L. Wong, L. Libkin,
W. Fan, W.-C. Tan, and M. Fourman, eds., Springer Berlin
Heidelberg, 291–320, 2013.

[20] P. Groth and L. Moreau. Provenance: an introduction to
PROV. Morgan & Claypool Publishers, 2013.

[21] P. Buneman, S. Khanna, and W. Tan. Why and Where: A
Characterization of Data Provenance. International
Conference on Database Theory:316–330, 2001.

