Collecting and Analyzing Provenance on Interactive
Notebooks: when IPython meets noWorkflow

Jodo Felipe Nicolaci Pimentel
Vanessa Braganholo Leonardo Murta

Universidade Federal Fluminense
Brazil

{jpimentel,vanessa,leomurta}@ic.uff.br

Abstract

Interactive notebooks help users explore code, run simulations, vi-
sualize results, and share them with other people. While these note-
books have been widely adopted in teaching as well as by scientists
and data scientists that perform exploratory analyses, their prove-
nance support is limited to the visualization of some intermedi-
ate results and code sharing. Once a user arrives at a result, it is
hard, and sometimes impossible, to retrace the steps that led to
the result, since they do not collect the provenance for interme-
diate resuls or of the environment. As a result, users must fulfill
this gap using external tools such as workflow management sys-
tems. To overcome this limitation, we propose a new approach to
capture provenance from notebooks. We build upon noWorkflow, a
system that systematically collects provenance for Python scripts.
By integrating noWorkflow and notebooks, provenance is automat-
ically and transparently captured, allowing users to focus on their
exploratory tasks within the notebook. In addition, they are able to
analyze provenance information within the notebook, to both rea-
son about and debug their work, using visualizations, SQL queries,
Prolog queries, and Python code.

1. Introduction

Interactive Notebooks are computational environments that allow
users to write documents containing code, text, plots, and other
rich media. Users can perform exploratory research by running
computations and visualizing their results interactively. Notebooks
can be shared and converted into other formats, such as HTML or
PDF. Two well known notebook environments are [Python Note-
book' and knitr®. Notebooks are being widely used: the traffic to
the IPython Notebook Web site suggests that more than 500,000
people actively use it [10].

IPython Notebook originated from IPython [9], a Python shell
that provides powerful features for interactive scientific comput-

Uhttp://ipython.org/notebook.html
2 http://yihui.name/knitr

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.

TaPP 2015, July 8-9, 2015, Edinburgh, Scotland.

Copyright remains with the owner/author(s).

Juliana Freire

New York University
USA

juliana.freire@nyu.edu

ing. While it helps scientists to explore, share, and keep track of
their experiments interactively [10], provenance support in [Python
Notebook is limited. Provenance can help scientists to interpret ex-
periments’ results, check if the experiments were executed as ex-
pected, understand the sequence of operations that lead to the re-
sults, and enable reproducibility [5]. However, provenance support
in IPython Notebook only allows visualization of some intermedi-
ate cell results and interpretation of the shared code. It does not
help scientists understand how the code executed. In fact, [Python
Notebook is not able to collect environment provenance such as the
version of the libraries used, and does not collect intermediate re-
sults within cells (e.g., different parameter values used in an explo-
ration). Therefore, the exploratory trail is lost and the reproducibil-
ity of the results is compromised. If a scientist wants to capture
more provenance about an experiment, she must export or rewrite
her experiment into an external script and run an external tool to
capture and analyze provenance from the script [1-4, 8, 11, 13].

We propose an approach that addresses this limitation and al-
lows transparent provenance capture directly from the notebook. In
previous work, we introduced noWorkflow [8], a tool that transpar-
ently captures provenance from Python scripts and provides mech-
anisms that allows users to explore this information. In this paper,
we present the integration of noWorkflow and IPython to allow sci-
entists to capture provenance from code executed inside [Python
notebooks, visualize the captured provenance as graphs, and query
the provenance using Prolog and SQL. We also show that note-
books are powerful tools for interactively exploring provenance.

The remainder of the paper is structured as follows. Section 2
presents both IPython and noWorkflow. Section 3 discusses how
to collect provenance inside notebooks. Section 4 discusses how
to analyze provenance collected by noWorkflow in notebooks. Sec-
tion 5 presents related work. Finally, Section 6 concludes this paper
and presents future work.

2. Background

IPython is a Python shell that interactively executes cells of code.
A cell is a multi-line text input field®. When a cell is executed,
[Python adds a number to the cell that can be further referenced
by a variable. If the last line of a cell is an expression, the cell
outputs the expression value. It is possible to implement various
representations for the output, such as plain text, PNG, SVG, La-
TeX, and HTML. These representations can be used to plot data
and media on different tools, such as IPython Notebook, QtCon-
sole, and terminal emulators. IPython Notebook fully supports all
these representations, but QtConsole does not support Javascript on

3 http://ipython.org/ipython-doc/3/notebook/notebook html

In [1]: values = ["noWorkflow", "IPython"]

In [2]: ["<li»{}</1i>".format(i) for i in values]

Out[2]: ['<li»noWorkflow</1i>", '"<1i>IPython</1i>"]

In [3]: "" + "".join(_) + "’

Out[3]: "noWorkflow</1li><1i>IPython</1i>"’

In [4]: from IPython.display import HTML
...: html_code = _3

...: HTML(html_code)

Out[4]:
* nollorkflow
* IPython

Figure 1. Using IPython to display an HTML list on QtConsole

the HTML and common terminals only support plain text. While
QtConsole is an [Python console that behaves like a terminal and
executes only cells of code, IPython Notebook is a web-based in-
teractive computational environment where it is possible to write
notebook documents. A notebook document is composed of cells,
which can contain either code or text.

Figure 1 presents IPython running on QtConsole. In this exam-
ple, we show how to interactively transform a Python list into an
HTML list. Each In [X] defines a cell and each Out[X] defines the
cell result. Note that the third cell references the second cell output
through the variable ‘_’ and the fourth cell references the third cell
output through the variable ‘_3’. Note also that the fourth cell is
composed by three lines of code and its result is an HTML object.

Since [Python runs on top of Python, it keeps all advantages
of using Python scripts for computational science, such as a clean
and simple syntax, the simplicity to integrate external tools, and to
run simulations [6]. In addition, it adds many features to stream-
line these tasks, such as shell commands, magics, extensions, and
interactive visualization.

An external program can be called by prepending an exclama-
tion point to its name. For example, ‘a = !Is’ assigns a list of lines
returned by /s command to the variable a. Magics are special func-
tions on IPython that can modify the way it executes, create new
variables, and provide more features. There are two kinds of mag-
ics: line magic and cell magic. A line magic can appear anywhere
in the cell. It is prefixed with the ‘%’ character, and uses the re-
maining of the line as parameter. For example, with the line magic
‘Yorun script.py’, it is possible to run an external script.py inside
a notebook. On the other hand, a cell magic only appears on the top
of the cell, is prefixed with a double ‘%%’, and uses the whole cell
as parameter. For example, with the cell magic ‘% %ruby’, it is pos-
sible to run ruby scripts written directly on the notebook. IPython
also supports extensions that can be loaded through the line magic
‘Dload_ext ext_name’. An extension defines an initializer that
loads customs magics and prepares the notebook environment.

noWorkflow (not only Workflow) [8] is an approach that auto-
matically captures provenance from Python scripts without requir-
ing any modifications to the script. It was conceived to help scien-
tists perform scientific experiments and data exploration, but can be
used to run and capture provenance of arbitrary scripts in Python.
Due to this reason, every run of a script in noWorkflow is called a
trial. noWorkflow captures definition, deployment, and execution
provenance when a script is executed and stores it. This provenance
can be read for further analysis. Figure 2 presents the architecture
of noWorkflow.

For every trial (a single execution of the script), noWorkflow
generates an identifier and all provenance collected during the
execution is stored in a database related to this identifier. It creates
the database in the same directory as the script, and puts it inside a
“.noworkflow” directory. The database is composed by a relational

Provenance Capture
I - - - = - - - - - = - q

r — - —

| DEFINITION PROVENANCE DEePLOYMENT PROVENANCE EXecuTION PROVENANCE |

l AST (osPyst?S:estmg?:r!inm —_ Proﬁling and I
| Analysis modulefinder) Reflection |
L — — — — —_— e = = — 4
stores
r— - — — i | r— - — — — — "
I < |
| W | | reads | g Diff Analysis |
I I I Provenance I
| Content Database | | _ Graph _ Querying I
.noworkflow directory
—_ — = = == L — —m — — — — — 4

Provenance Storage Provenance Analysis

Figure 2. Architecture of noWorkflow [8]

database and a content database. The content database stores all the
scripts and files used in the trial and the relational database stores
the remaining provenance.

noWorkflow uses abstract syntax tree (AST) analysis to col-
lect definition provenance. It identifies user defined functions, func-
tion calls, arguments, and global variables referenced in the script.
noWorkflow collects deployment provenance by identifying the
version of imported modules and environment variables. Finally,
noWorkflow collects execution provenance through the use of pro-
filing and reflection to identify function activations (calls), argu-
ment values, return values, global values, start and finish times for
each activation, as well as their context. It also captures the content
of all files manipulated by the experiment script before and after
the manipulation and stores them in the content database.

Scientists can perform SQL queries on the database or export a
trial as Prolog facts and perform Prolog queries to analyze captured
provenance. They can also use the visualization tool provided by
noWorkflow to visualize activation graphs or use the command line
to compare trials during the analysis.

Figure 3 presents a small piece of Python code that we will use
as example. Note that it is composed by two scripts. The main script
is scriptl.py and it imports functions ‘y’ and ‘z’ from script2.py.
These functions manipulate text files and have different delays to
simulate slow functions. Running scriptl.py with noWorkflow is
as simple as running it with Python: now run scriptl.py.

In this example, it is possible to see that noWorkflow will store
scriptl.py and the function x with parameter i as definition prove-
nance; environment variables, script2 module at version 1.0.2,
random, time and other Python modules imported by those mod-
ules as deployment provenance; calls to range, x, y and z, and files
‘y.txt’ and ‘z.txt’ as execution provenance. Currently, noWorkflow
only captures calls on the main script. So it will not store calls to
sleep, open, write and format. If this is the first trial, noWorkflow
will associate all the collected provenance to the trial id 1. It is
possible to get basic trial information (i.e. main script name, main
script hash, start time, finish time) by running now show 1 as we
show in Figure 4.

Note that noWorkflow will not capture the definition provenance
from script2.py, even though it is in the same directory of the
main script and may be part of the workflow definition. This oc-
curs because noWorkflow statically captures most of the definition
provenance only to support the execution provenance collection,
but it only captures the execution provenance from the main script,
reducing the size and time overhead. Thus, it only captures the def-

scriptl .py
from script2 import y, z

def x(i):
if i % 2:
z(i)
return y(i)
return z(i)

if __name__ == ’__main__":
for i in range(3):
x(1)
z(1)

script2.py
from random import random
from time import sleep

def y(i):
sleep (.01)
with open(’y.txt’, “a’) as f:
f.write(’—_{}\n’.format(i))

def z(i):
sleep (. 1)
with open(’z.txt’, 'w’) as f:
f.write(’—_{}\n’.format(i))

__version__ = "1.0.2"

Figure 3. Script example

[now] trial information:
Id: 1
Inherited Id: None
Script: scriptl .py
Code hash:
6d4bb7baa267060e4356860801¢30060083403f1
Start: 2015—03—-23 23:28:32.253135
Finish: 2015—-03—-23 23:28:33.629065

Figure 4. Showing trial 1 basic information

inition provenance from scriptl.py. However, it does capture the
script2.py content during deployment provenance collection.

3. Provenance Collection in IPython Notebook

We integrated noWorkflow’s provenance collection and IPython
Notebook by using IPython’s concepts of line magic and cell
magic. While our line magic collects provenance from external
scripts, our cell magic collects provenance inside notebooks.

Line magic. The easiest way to capture provenance from exter-
nal scripts is to simply execute noWorkflow as is. We propose a
line magic, ‘%now_run’, to perform that. One could argue that
this could be performed by a simple shell command. However, to
analyze the externally collected provenance in the notebook, a sci-
entist would have to know the generated trial id and load a trial ob-
ject that provides an interface for analysis, as we show in Section 4.
Our line magic not only executes noWorkflow externally, but also
returns the trial object, which can be used for immediate analysis.

This line magic supports all arguments that the default now run
command supports (see [8] for details on those commands).

Cell magic. While the aforementioned /ine magic improves the
usability for analyzing the notebook, it is tailored to execute exter-
nal scripts outside the notebook. This would require the script to be
previously created and saved into a file before running it in the note-
book. To avoid this step, we propose a cell magic, ‘%%now_run’,
which runs the script defined in its body. When this cell magic is
executed, it creates a temporary file with the cell content as file con-
tent. Then, it runs noWorkflow with this file as input. Considering
that the file runs externally, it is not possible to use notebook vari-
ables directly in the cell. It is only possible to pass these variables
as parameters to the script. The same way, it is not possible to use
the result of the trial directly, but it is possible to load the output
into a variable.

By default, noWorkflow uses the script name to identify trials
and this name can be used in queries to look at a trial family
(i.e., trials that are probably similar since they were generated from
scripts with the same name, that belong to the same experiment
or exploratory analyses). Since cells have no name, we added an
optional argument, name, on the magics to indicate the trial family.
With this argument, it is possible to indicate that a given trial from
a specific cell belongs to a specific experiment.

IPython extension. We implemented an IPython extension, called
noworkflow to register these and other magics related to noWork-
flow in its initializer. The line magic ‘%onow_ls_magic’ lists ex-
isting noWorkflow magics.

Figure 5 presents provenance collection using noWorkflow. The
first cell loads the extension, sets the default graph width to 392px
and the default graph height to 150px. The second cell uses a line
magic to execute an external script with a custom script name (tapp)
and returns the trial id (4). The third cell assigns a value to a
variable. The fourth cell uses a cell magic to execute an internal
script, with the same name, defines that the cell output will be
stored on the variable out_var, passes the variable size as argument,
and returns a trial object. Note that the result of the fourth cell is a
trial object and it is represented as a graph as we explain on Section
4. Finally, the last cell just returns the value of our_var. Note that
Python’s print appends a “\n’ by default.

4. Provenance Analysis in IPython Notebook

The first step in supporting provenance analysis on notebooks is to
connect to the provenance database. With access to the database,
it is possible to query the provenance and use it for analysis.
We propose visualizations, querying methods and trial objects to
perform analysis using notebooks.

A trial object represents a single trial. It can be instantiated by
specifying only the trial id. A trial has information about the scripts
that generated it, its start time, finish time, environment variables,
imported modules, accessed files, and activations (function calls).
When a user wants to perform common queries to get these trial
information and process the results using Python, she can access
properties and call methods from the trial object and it will connect
to the database to retrieve data ready for immediate analysis. The
trial object caches some results to avoid querying the database
every time. In addition, the trial object has properties and methods
to retrieve other derived information, such as the trial duration. The
default visualization of a trial object is an activation graph that
shows the sequence of calls and sub-calls. An example of activation
graph is shown in Out[4] of Figure 5.

IPython supports many display methods for objects. Since we
display graphs for trials, the most suitable methods are PNG, SVG,
and HTML. While PNG and SVG have the advantage of supporting
visualization not only on the Notebook, but also on QtConsole

In [1]: %load_ext noworkflow
%now_set default graph.width=392 graph.height=150

In [2]: trial = %now_run scriptl.py --name tapp
trial.id
outf[2]: 4

In [3]: size =5

In [4]: %%now_run --pame tapp --out=out var $size
import sys
1 = range(int(sys.argv[1]))
c = sum(l)
print(c)

outf4]: -

Trial 5. Ctri-click to toggle node

fimp/now_run_O53AQP/now_run

In [5]: out var

Out[5]: 'lewn’

Figure 5. Provenance collection in notebook using noWorkflow

during the execution of [Python shell, HTML has the advantage of
supporting JavaScript, allowing better interactions. For this reason,
we chose HTML with JavaScript as the output display format for
trials.

We adopted the D3 JavaScript library* to display the graphs. We
chose D3 because it is fast enough to display thousands of nodes in
a graph and customizable for applying different techniques. We im-
plemented our visualizations in external JavaScript files with cus-
tom CSS. Thus, it is necessary to load D3 and load our JavaScript
and CSS files to run our visualizations on the notebook. This is ac-
complished by an init function that has the purpose of loading both
external JavaScript and CSS dependencies, and setting the project
path on the persistence module. By default, the path is the current
directory, but it is possible to specify other directories with a named
argument.

This init function is the part of noWorkflow that eases its inte-
gration with IPython. Besides this function, noWorkflow also pro-
vides access to the trial objects and to special functions that sets de-
fault variables. The noworkflow extension initializer calls this func-
tion when it is loaded. Thus, it sets the project path to the current
directory. It is possible to overwrite this configuration by manually
calling the init function afterwards.

Figure 6 presents the use of a notebook to open the noWorkflow
visualizations. In the first cell, we imported the module ipython and
named it nip, then we called the function init to load all JavaScript
and CSS dependencies and to set the project path to “/home-
/joao/projects/tapp15”. Finally, we set the default graph width of
392px for all graphs. In the second cell, we just instantiated a trial
object referring to trial 1 with custom height (350px) and custom
graph mode (2). This visualization presents activation as nodes and
fill the nodes color according to their duration (using the traffic
light scale). Edges on the graph represents calls (black arrows),
sequences (blue arrows), and returns (dashed black arrows). In this

4 http://d3js.org

In [1]: import noworkflow.now.ipython as nip
nip.init(path='/home/joao/projects/tappl5"')
nip.set default('graph.width', 392)

In [2]: nip.Trial(1l, graph_height=358, graph_mode=2)
out[2]:

Trial 1. Ciri-click to toggle n /home/joao/projects/tapp15b/scriptl

Figure 6. Trial visualization in notebook

case, it is possible to see that the main script called range, then x
three times, then z. First and third x called z. Second x called z, then
y. The graph mode specifies how to combine activations and sum-
marize the graph. It is possible to visualize all activations (mode 1),
combine activations with the same name and sub-structure (mode
2) or combine activations by namespace (mode 3).

As we mentioned before, visualization is not the only way to
analyze provenance in noWorkflow. The trial objects have fields
that can be explored. For example, the field script_content returns
the content of the main script, while the file id returns the trial id.

It is also possible to run Prolog and SQL queries. We pro-
pose two cell magics to allow queries: ‘%%now_prolog’ and
“%%now_sql’. Both cell magics execute queries and may receive
a variable result as parameter. If they receive a variable result, the
magic assigns the result to the variable as an iterator. If they do
not receive it, the result is presented as output. The cell magic
P%%now_sql’ outputs a table where the first row is the header.
The cell magic “%%now_prolog’ outputs a list. Each entry in the
list is a match. It is possible to interpolate the content of both cell
magics with python code.

The cell magic ‘%%mnow_prolog’ may also receive trial ids as
parameters. The ids indicate that it should export provenance from
specified trials as Prolog facts. This way, we avoid eagerly loading
the whole database and export facts on demand. This magic also
loads Prolog rules that are automatically generated by noWorkflow
(see [8]).

Figure 7 presents these possibilities of analysis. The first cell
(In [3]) assigns the result of the last cell (i.e. the trial object from
Figure 6) to the variable trial and presents the code that generated
trial 1. The second cell (In [4]) queries the duration of z activations
using Prolog. Note that this cell loads trial 1 facts, interpolates
the ‘trial.id’ into the query content, and stores an iterator into the
variable result. The third cell (In [5]) iterates through the result and
prints the matches. Finally, the last cell (In/6]) performs a SQL
query to get all the activations that accessed the file ‘y.zxt’ and
outputs its result.

When a scientist collects provenance by running noWorkflow
outside a notebook, she may want to perform the analysis on a

In [3]: trial = _
print(trial.script_content)

from script2 import y, z

def x(i):
if i % 2:
z(1)
return y(i)
return z(i)

if _npame == "' main_':
for 1 in range(3):
x(1)
z(1i)

In [4]: %%now prolog --result result 1
duration({trial.id}, z, X)

In [5]: for match in result:
print(match['X'])

0.161475000381
0.10070514679

0.160728988647
0.160710868835

In [6]: %%now _sql
SELECT A.id, A.name, A.trial id
FROM file Access F
JOIN function activation A
ON A.id == function activation id
WHERE F.name == "y.txt"

0utl6l: fig |name |trial_id

T |y 1

17|y 2

30|y 4

Figure 7. Provenance analysis in notebook

notebook. To easy this task, we implemented an export command
line option on noWorkflow to export notebook files related to trial
objects. The export command receives the trial id and generates a
notebook file with the code used for loading the trial.

A scientist can perform analysis on any data collected by
noWorkflow through SQL queries, Prolog queries and calls to
methods. Thus, it is possible to perform analysis on the definition
provenance, by getting the defined functions, arguments, and glob-
als in the script used for a trial. It is possible to perform analysis
on deployment provenance by identifying the versions of imported
modules; reading their source code; and checking the environment
variables. Finally, it is possible to perform analysis on the execu-
tion provenance by getting the files content before and after open-
ing them; extracting and visualizing activation graphs; and getting
duration, parameters, globals, and return values from activations.

Scientists can also integrate different tools and queries, since
the queries results can be obtained as Python objects and connected
through Python code. For example, in an experiment in which an
environment variable defines the name of a file, a scientist may run
a SQL query to get the environment variable first, then run a Prolog
query to get the file hash, use a method to get the file content and
open it in an external tool for analysis. If it is a recurring process,
the scientist can easily define a function on IPython to perform it.
Figure 8 presents a function that performs these operations for a
specific trial and returns attributes from the result extracted by an
external tool.

In [3]: def extract from result(trial_id, attributes):
trial = nip.Trial(trial id)

SQL query
sql = first(nip.persistence.query("""
SELECT value
FROM environment attr
WHERE name="'EXP_NUMBER'
AND trial id={}""".format(trial.id)))
name = 'exp{}.dat'.format(sql['value'])

Prolog query
prolog = first(trial.trial prolog.query("""
access({0}, , '{1}', , ., X, .,)

v format(trial.id, name)))
hash = prolog['X']

Create new file with old content

content = nip.persistence.get(hash)

with open('.temp.dat', 'w') as f:
f.write(content)

Call external program to extract result
result = !./extractor .temp.dat $attributes

Transform result into a dict
values = result[0].split()
attrs = attributes.split()
return {key:values[i]
for i, key in enumerate(attrs)}

In [4]: extract from result(l, "x result")

out[4]: {'result': '3', 'x': '©'}

In [5]: extract from result(2, "result y")

out[5]: {'result': '40', 'y': '4'}

Figure 8. Provenance analysis with a custom function

5. Related Work

Previous approaches have been proposed to integrate provenance
into interactive notebook systems. Ducktape [14] generates [Python
notebooks with visualizations for provenance captured from ex-
ternal experiments. While they focus on using the notebook only
for interactive visualization, our approach allows scientists to run
any kind of analysis on the notebook, including running Prolog and
SQL queries, and using common object queries. We also allow sci-
entists to fully use notebooks as their main experimentation envi-
ronment, by providing cell magics for collecting provenance.

Lancet [12], on the other hand, allows scientists to perform ex-
ploratory research on IPython Notebook by capturing provenance
and visualizing results. However, it does not capture provenance
from pure Python code. It requires the definition of special launch-
ers and the usage of the existing ones to capture provenance. This
may result in a steeper learning curve than using our approach, as
we capture provenance from any Python code.

6. Conclusion

In this paper, we present a new mechanism to collect and an-
alyze provenance for IPython notebooks. The mechanism sup-
ports provenance analytics through different tools, including SQL
queries, Prolog queries, object properties, and graph visualization.
With our approach, it is possible to get provenance data from dif-
ferent queries, and combine them with custom Python code. We
also propose magics to improve the usability during the collec-
tion and analysis of provenance inside the notebook. This allows
scientists to perform all their exploratory work interactively in-

side notebooks: they need not to switch environments to capture
or analyze the provenance information. noWorkflow is available as
open source software at https://github.com/gems-uff/
noworkflow.

IPython Notebook, QtConsole, and other language-agnostic
parts of IPython will move to a new project called Jupyter in
the near future. Jupyter will use IPython as its kernel for running
Python code interactively. Since Jupyter will keep its concepts, we
believe our approach will stay valid for capturing Python prove-
nance under Jupyter notebooks.

As future work, we plan to implement new visualizations for
provenance, such as variable dependency graphs and diff visualiza-
tion for files, modules, and environment. We foresee the integration
of noWorkflow with Pandas [7] to improve provenance analysis.
We also plan to support provenance collection internally to IPython
to ease variable interchanging. Finally, it would be interesting to
extend noWorkflow to capture provenance from other languages
supported by Jupyter.

Acknowledgments

Authors would like to thank CNPq, CAPES and FAPERIJ (Brazil)
for partially supporting this work. This work was supported in part
by a Google Faculty Award, an IBM Faculty Award, the Sloan
Foundation, the Moore-Sloan Data Science Environment at NYU,
NSF awards CNS-1229185 and 1405927.

References

[1] E. Angelino, D. Yamins, and M. Seltzer. StarFlow: A script-centric
data analysis environment. In International Provenance and Annota-
tion Workshop (IPAW), pages 236-250, Troy, NY, USA, 2010.

[2] C. Bochner, R. Gude, and A. Schreiber. A Python Library for Prove-
nance Recording and Querying. In International Provenance and An-
notation Workshop (IPAW), pages 229-240, Salt-Lake City, UT, USA,
2008.

[3] E. S. Chirigati, D. Shasha, and J. Freire. Reprozip: Using provenance
to support computational reproducibility. In USENIX Workshop on the
Theory and Practice of Provenance (TaPP), pages 977-980, 2013.

[4] A. Davison. Automated Capture of Experiment Context for Easier
Reproducibility in Computational Research. Computing in Science &
Engineering, 14(4):48-56, 2012.

[5] J. Freire, D. Koop, E. Santos, and C. Silva. Provenance for Computa-
tional Tasks: A Survey. Computing in Science & Engineering, 10(3):
11-21, May 2008.

[6] H. P. Langtangen. Python scripting for computational science, vol-
ume 3 of Texts in Computational Science and Engineering. Springer,
2006.

[7]1 W.McKinney. Python for data analysis: Data wrangling with Pandas,
NumPy, and IPython. "O’Reilly Media, Inc.", 2012.

[8] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire. noWork-
flow: Capturing and Analyzing Provenance of Scripts. In International
Provenance and Annotation Workshop (IPAW), pages 71-83, Cologne,
Germany, 2014.

[9] F. Perez and B. E. Granger. IPython: a system for interactive scientific
computing. Computing in Science & Engineering, 9(3):21-29, 2007.

[10] H. Shen. Interactive notebooks: Sharing the code. Nature, 515(7525):
151-152, 2014.

[11] M. Stamatogiannakis, P. T. Groth, H. J. Bos, and others. Looking
Inside the Black-Box: Capturing Data Provenance using Dynamic In-
strumentation. In International Provenance and Annotation Workshop
(IPAW), pages 155-167, Cologne, Germany, 2014.

[12] J.-L. Stevens, M. Elver, and J. A. Bednar. An automated and repro-
ducible workflow for running and analysing neural simulations using

Lancet and IPython Notebook. Frontiers in Neuroinformatics, 7:44,
2013.

[13] D. Tariq, M. Ali, and A. Gehani. Towards Automated Collection
of Application-level Data Provenance. In USENIX Workshop on the
Theory and Practice of Provenance (TaPP), pages 1-5, Boston, MA,
USA, 2012.

[14] A. Wibisono, P. Bloem, G. K. de Vries, P. T. Groth, A. Belloum,
M. Bubak, and others. Generating scientific documentation for com-
putational experiments using provenance. In International Prove-
nance and Annotation Workshop (IPAW), pages 168—179, Cologne,
Germany, 2014.

