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Abstract
Scripting languages like Python, R, and MATLAB have seen signif-
icant use across a variety of scientific domains. To assist scientists
in the analysis of script executions, a number of mechanisms, e.g.,
noWorkflow, have been recently proposed to capture the prove-
nance of script executions. The provenance information recorded
can be used, e.g., to trace the lineage of a particular result by iden-
tifying the data inputs and the processing steps that were used to
produce it. By and large, the provenance information captured for
scripts is fine-grained in the sense that it captures data dependencies
at the level of script statement, and do so for every variable within
the script. While useful, the amount of recorded provenance in-
formation can be overwhelming for users and cumbersome to use.
This suggests the need for abstraction mechanisms that focus at-
tention on specific parts of provenance relevant for analyses. To-
ward this goal, we propose that fine-grained provenance informa-
tion recorded as the result of script execution can be abstracted us-
ing user-specified, workflow-like views. Specifically, we show how
the provenance traces recorded by noWorkflow can be mapped to
the workflow specifications generated by YesWorkflow from scripts
based on user annotations. We examine the issues in constructing a
successful mapping, provide an initial implementation of our solu-
tion, and present competency queries illustrating how a workflow
view generated from the script can be used to explore the prove-
nance recorded during script execution.

1. Introduction
Despite the popularity of scientific workflows as a means to specify
and enact in silico experiments, the majority of scientists still pro-
cess and analyze their datasets using scripts. This may be partly due
to the fact scripting languages such as Python and R allow easier
customization as they expose the processing steps at the level of a
statement, as opposed to workflows where the designer is typically
unable to access or modify the implementation of the modules that
constitute the workflow.

To assist scientists in the analysis of script executions, retro-
spective provenance information specifying, amongst other things,
the lineage of script results and the transformations they under-
went, can be useful in, e.g., assessing the validity of the hypoth-
esis the scientist is investigating. For example, a scientist may wish
to know the data inputs and processing steps that have been used
to produce a peculiar result. To this end, several mechanisms have
been recently proposed to capture the provenance traces of script
execution [4, 7, 11, 18]. Consider, for example, noWorkflow, a tool
that we focus on in this paper, which was developed by Murta et al.

to capture provenance information for Python scripts [18]. noWork-
flow automatically captures data manipulation at the level of state-
ment, thereby providing a fine-grained and rich account of the data
dependencies between the data artifacts used and generated by the
script execution. While useful, the amount of information such fine-
grained traces contain can be overwhelming for end users. This
demonstrates the need for abstraction techniques that focus the at-
tention of the user on the provenance information that is relevant for
her analysis. We stress here that recording fine-grained, statement-
based provenance can be crucial for understanding the lineage of
scripts results. However, we argue that in order for such prove-
nance information to be readily accessible and useful for end users,
it needs to be abstracted and filtered to match the questions users
want answered. Indeed, end users are often interested in the lineage
of a small subset of the data artifacts manipulated and generated by
the script. Moreover, by and large, they are not keen on examining
the transformations such data artifacts underwent at the statement
level.

With the above observation in mind, we present a solution where
the fine-grained provenance information captured by noWorkflow
is overlaid with a workflow that focuses the attention of the user on
a small subset of data artifacts of interest, and hides the complexity
of statement-based provenance by aggregating script statements
within activities. Both data artifacts and activities are tagged with
informative domain annotations.

Our work is related to the Zoom system proposed by Biton et
al. which utilizes user views as abstractions for focusing the user
attention on a subset of the provenance traces of a possibly large
workflow by composing together subsets of the activities that con-
stitute the workflow [3]. Our work is also related to the proposal of
Alper et al. for summarizing complex workflows. Given a workflow
specification, they define reduction rules that exploit user-defined
tags annotating the activities of the workflows and the input and
output ports thereof, to produce a concise workflow specification
containing only the steps necessary for understanding the in silico
experiment implemented by the initial workflow [1, 2].

We adopt an approach that is similar to the above proposals fo-
cusing on scripts instead of workflows. We do not build our solution
from scratch. Instead, we reuse an existing solution, YesWorkflow,
which provides a workflow-like view of scripts. Given a script,
YesWorkflow generates a workflow based on user annotations that
reveal the computational modules and dataflows otherwise implicit
in the script, i.e. the prospective provenance. We show how the
workflow structure produced from YesWorkflow can be utilized
to abstract the provenance information captured by noWorkflow.
Our contributions are as follows: (i) we examine how the prove-
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Figure 1. Weather prediction workflow

nance traces captured by noWorkflow can be mapped to the more
abstract workflow view defined by YesWorkflow; (ii) we define a
framework illustrating how this integration can be achieved; (iii) we
present a prototypical implementation using a collection of Datalog
rules that maps noWorkflow’s provenance to YesWorkflow’s prove-
nance; and (iv) we show competency queries illustrating example
lineage provenance queries that are can be answered.

Outline. Section 2 describes the related work and discusses the
working details of YesWorkflow and noWorkflow. Section 3 intro-
duces the weather simulation workflow. Section 4 analyzes gaps we
have found and Section 5 presents our proposed framework with
a prototypical implementation. Section 6 shows how to use this
framework to query provenance data and Section 7 summarizes our
contributions and discusses future work.

2. Background
The importance of provenance in computational science is well-
recognized [10] and has led to provenance standards including the
W3C PROV data model [17]. Both prospective provenance (i.e.,
the specification of the computation) and retrospective provenance
(i.e., the exact steps followed during execution) contribute impor-
tant information [22]. For workflows, the ProvONE model extends
the PROV model to allow detail about the processes, ports, and data
links [5].

While there has been much work in provenance relating to
scientific workflows and at the system level, recently there has been
some focus to capture the provenance of script executions. [4] relies
on client libraries to capture traces of executions of scripts, whereas
[20] make use of compilers that insert provenance capture within
the script before and after function calls. Such approaches require
major changes to the script to capture provenance. Moreover, they
do not provide users with the means to understand the script itself
(i.e., its prospective provenance).

noWorkflow adopts a non-intrusive approach to capturing ret-
rospective provenance of scripts [18]. It is worth underlining here
that noWorkflow also provides prospective view of the provenance.
However, it uses the underlining script as is to derive such prove-
nance. Because of this, the prospective (as well as the retrospective)
provenance generated by noWorkflow depends on the level of ab-
straction in the script and can produce fine-grained provenance that
becomes cumbersome.

YesWorkflow [15] uses an annotation language, which is sim-
ilar to Javadoc∗ and Doxygen†, to generate workflow graphs that
help users understand the building blocks (modules) that compose
the script and their dataflow dependencies, a.k.a. prospective prove-
nance. YesWorkflow is also related to the area of literate program-
ming (e.g., Knitr [21] and IPython [19]). In literate programming
a script is decomposed into snippets of macros, which are inter-
spersed within documents that are written in natural language to
explain the scripts and eventually analyze the results it generates
upon execution. Dataflow dependencies in literate programming

∗ http://en.wikipedia.org/wiki/Javadoc
† http://en.wikipedia.org/wiki/Doxygen

approaches are implicit, and it is up to the user to infer them by
examining the details of the script snippets in the cells.

Previous work describes how causality can be inferred using
both prospective and retrospective provenance and discuss the ben-
efits of user-defined information, which is user annotation captured
at different level of granularities [6, 10]. [12] extends the Open
Provenance Model (OPM) to model both prospective and retro-
spective provenance. [22] argues that prospective and retrospective
provenance together provide a complete understanding of the data,
illustrates a virtual data approach to integrating prospective and
retrospective provenance with semantic annotations, describes the
powerful queries that can be performed on such an integrated base,
and introduces an implementation that provides these benefits in
a large-scale scientific computing environment. [16] extends W3C
PROV to model both prospective and retrospective provenance. In
our earlier work [9], we showed that prospective and retrospec-
tive provenance can be combined to provide unambigious lineage
querying. In [8], we showed that prospective provenance can im-
prove the precision of retrospective provenance by reducing the
number of “false” dependencies and conversely, fine-grained ex-
ecution provenance can be used to improve the precision of input-
output dependencies of workflow actors.

Our work integrates noWorkflow and YesWorkflow prove-
nances by mapping (i.e., translating) the retrospective provenance
captured by noWorkflow into a model that is compatible with the
prospective provenance generated by YesWorkflow.

2.1 noWorkflow
noWorkflow captures the retrospective provenance of an execution
of a Python script by analyzing the abstract syntax tree of the
script to identify the function calls and variables referenced in the
script. noWorkflow produces an execution log containing function
calls, the input values, and the returned values. Additionally, it
captures information about the signatures of the functions, the
variables within the script, and the execution environment details.
In what follows, we will focus on the execution log captured by
noWorkflow, which is modeled using the following predicates.

The activation predicate has arguments run id, id, name,
start, finish, and caller id, and is used to capture the func-
tion calls. The run id identifies the script run; the id uniquely
identifies the function activation within the run; name is the
name of a function; and caller id is the identifier of the func-
tion activation that caused the activation of this function. start
and finish are time-stamps denoting the beginning and end of
the activation. The access predicate has arguments run id, id,
name, mode, content before, content after, timestamp, and
activation id, and is used to record read and write access to
data files. The id identifies the access within the run; the name
holds the file name being accessed; the mode is the mode of access,
i.e., read or write; content before (resp. content before) a
hash key used to locate the content of the file before (resp. after)
the access took place; timestamp, representing the time when the
access occurred; and activation id identifying the activation
within which the access took place. The variable predicate has
arguments run id, v id, name, line, value, and timestamp,



and is used to record the values that a variable identified by v id
and named name within the script has been accessed within the run
run id. It also records the time stamp at which the access occurred.
The usage predicate has arguments run id, id, vid, name, and
line, and is identified by an integer id. Given a run identified by
run id, it records the lines in the script where a variable identified
by v id and named name, was used. The dependency predicate
has arguments run id, id, dependent, and supplier, and is
used to define data flow dependencies between variables, or more
specifically with a run. dependent refers to the variable, the value
of which depends on the variable identified by supplier.

2.2 YesWorkflow
YesWorkflow allow script developers (or annotators) to expose
the prospective provenance of a script, i.e., the steps that com-
pose the script and their data flow dependencies by providing
mark ups within the script. YesWorkflow annotations are of the
form @tag, value, where @tag is a keyword that is recognized
by YesWorkflow and value represents value instance of the con-
cept represented by the @tag. The script annotations are used by
YesWorkflow to generate a workflow specification, which can be
mapped to the following ProvONE model constructs.

A process in YesWorkflow corresponds to a chunk in the script
that represents a meaningful computational step. It is defined and
delimited within the script using the @begin and @end tags. The
InputPort (resp. OutputPort) represents an input (resp. output)
parameter of a process. They are designated using the tags @in

and @out respectively. Datalink specifies the dependencies be-
tween output ports and input ports within the script. In YesWork-
flow, Datalinks are not explicitly specified. Instead, they are im-
plicitly inferred by matching the names of the output ports and in-
puts ports specified by the @in and @out tags in the script.

3. Running Example
To illustrate how we can leverage integrated YesWorkflow and
noWorkflow provenances, we use a Python script that approximates
a weather forecasting calculation (see Fig. 2). The script reads
two files, data1.dat and data2.dat, which contain information
about the past temperature readings and precipitation amounts, re-
spectively (lines 29–39). The temperature data is used to select a
model—model1 or model2—which takes both input arrays and
creates a matrix with future predictions for temperature and pre-
cipitation (lines 41–54). The script then extracts the temperature
and precipitation columns (line 56–66), and creates a scatterplot
of these two variables that is saved to the output.png file (lines
68–73).

Notice that the script is annotated with YesWorkflow comments
and segmented into user-defined functions to make it easier to
parse. Lines 29–31 show a YesWorkflow annotation that speci-
fies the name of the process and the inputs and outputs, each tied
to a more descriptive alias via the as keyword. These lines de-
note the beginning of a computational process, and Line 33 de-
notes the end of that block. In that block, the actual input file-
name is data1.dat—a rather generic name, but the YesWorkflow
alias identifies it as past temperature data. Using these annotations,
YesWorkflow can produce a workflow that encodes the prospective
provenance of the script as depicted in Figure 1.

By executing the example script in noWorkflow, we can au-
tomatically collect a variety of provenance data ranging from
prospective provenance (definition provenance) gathered from the
abstract syntax tree to retrospective provenance that is fine-grained
and captured by tracing execution steps. This provenance can be

1 import csv
2 import sys
3 import matplotlib.pyplot as plt
4 from simulate import model1, model2
5 import time
6
7 def read_file(data_fname):
8 reader = csv.reader(open(data_fname, 'rU'),

delimiter=':')
9 arr = []

10 for row in reader:
11 arr.extend([float(x) for x in row])
12 return arr
13 def extract_column(data, idx):
14 c = []
15 for row in data:
16 c.append(row[idx])
17 return c
18 def create_plot(x, y, xlabel, ylabel, marker,

out_fname):
19 plt.scatter(x, y, marker=marker)
20 plt.xlabel(xlabel)
21 plt.ylabel(ylabel)
22 plt.savefig(out_fname)
23
24 ## @begin main
25 # @in data1.dat @as temperatureDataFile @URI

file:temp.dat
26 # @in data2.dat @as precipitationDataFile @URI

file:precip.dat
27 # @out output.png @as plot
28
29 ## @begin read_file_1
30 # @in data1.dat @as temperatureDataFile @URI

file:temp.dat
31 # @out a @as pastTemperatureData
32 a = read_file("data1.dat")
33 ## @end read_file_1
34
35 ## @begin read_file_2
36 # @in data2.dat @as precipitationDataFile @URI

file:precip.dat
37 # @out b @as pastPrecipitationData
38 b = read_file("data2.dat")
39 ## @end read_file_2
40
41 if sum(a)/len(a) < 0:
42 ## @begin model_1
43 # @in a @as pastTemperatureData
44 # @in b @as pastPrecipitationData
45 # @out data @as simulatedWeather
46 data = model1(a, b)
47 ## @end model_1
48 else:
49 ## @begin model_2
50 # @in a @as pastTemperatureData
51 # @in b @as pastPrecipitationData
52 # @out data @as simulatedWeather
53 data = model2(a, b)
54 ## @end model_2
55
56 ## @begin extract_temperature
57 # @in data @as simulatedWeather
58 # @out t @as temperatureData
59 t = extract_column(data, 0)
60 ## @end extract_temperature
61
62 ## @begin extract_precipitation
63 # @in data @as simulatedWeather
64 # @out p @as precipitationData
65 p = extract_column(data, 1)
66 ## @end extract_precipitation
67
68 ## @begin create_plot
69 # @in t @as temperatureData
70 # @in p @as precipitationData
71 # @out output.png @as plot @URI file:ouput.png
72 create_plot(t, p, "Temperature", "Precipitation", 'o',

"output.png")
73 ## @end create_precipitation
74
75 ## @end main

Figure 2. Simulation.py



exported as Prolog facts that identify variables and data dependen-
cies. In the following facts:

variable(6, 93, 'row', 14, "['0.0']",
1430231173.397779).

variable(6, 94, 'return', 15, 'None',
1430231173.397797).

dependency(6, 34, 94, 93).

the first fact states that the variable identified by the integer 93 and
named row took the value [′0.0′] in line 14 in the script. The second
fact similarly identifies a variable, its value, and the line number of
the code while the third fact states a data dependency between the
aforementioned variables.

4. Analysis and Observations
As discussed in Section 2, the annotations from YesWorkflow and
provenance from noWorkflow can be connected to permit a wider
set of provenance queries. However, constructing the necessary
links involves some modifications to the provenance generated by
these tools. Using the weather simulation example ( Fig. 2), we
highlight some of the obstacles involved in defining these connec-
tions.

The example workflow was modified from an example included
with noWorkflow source code. Changes include moving tempera-
ture and precipitation data to separate files and adding an if-then-
else block to switch between two models based on the average tem-
perature in the input. In addition, repeated code has been refac-
tored into functions. Finally, we have added YesWorkflow annota-
tions. The entire script is shown in Listing 2. Using noWorkflow,
the workflow was then executed multiple times with different input
datasets. The workflow generated from YesWorkflow annotations is
shown in Fig. 1 and the provenance graph from one of the noWork-
flow executions in Fig. 10.

We note that noWorkflow generates provenance using the
script’s variable names, and YesWorkflow binds (some of) the vari-
ables in the script to aliases that are used to name the input and
output ports of the workflow. This allows us to connect the retro-
spective provenance generated by noWorkflow with the workflow
extracted by YesWorkflow. There are, however, issues that need to
be addressed, which we discuss in what follow.

4.1 Issues With Prospective Provenance

Control flow support. Consider lines 41–54 of Fig. 2. The
if-then-else control flow construct is used to switch between
two models. Intuitively, we might define each block separately
with YesWorkflow annotations, thus using the @out data @as
simulatedWeather annotation twice, once for each block. Cur-
rently, YesWorkflow does not support this. A solution to get around
this issue and allow YesWorkflow to parse the script comments
consists in having the annotation outside the if-then-else block as
illustrated in Fig. 3.

It is worth underlining here that YesWorkflow is ongoing devel-
opment, and that it will be possible in a future release to have the in-
vocations of model1 and model2 in two different blocks with two
different @out annotations referring to the same succeeding input
port. Fig. 1 illustrates the workflow that will be extracted when this
feature becomes supported by YesWorkflow.

Identifier reuse. In a script, an identifier may be used multiple
times for different purposes. For example, an identifier may be
used in the scope of a function as well as in the main script.
Even if the systems are able to resolve the scope, users may have
trouble understanding provenance links. noWorkflow tracks line

1 # @begin model
2 # @in a @as pastTemperatureData
3 # @in b @as pastPrecipitationData
4 # @out data @as simulatedWeather
5 if (sum(a)/len(a)) < 0:
6 data = model1(a,b)
7 else:
8 data = model2(a,b)
9 # @end model

Figure 3. Annotating an if-then-else control block using YesWork-
flow

Figure 4. Logical architecture.

numbers to help. YesWorkflow does not. However, its does record
the line numbers of the start and end of each block when requested.
Therefore, when noWorkflow records that a given variable was
updated on a particular line, it is possible to identify the block, and
thus the variable, in the workflow that was subject to update.

Linking identifiers. YesWorkflow generates provenance using
identifiers from the user-defined annotations, but noWorkflow
captures provenance using the script’s variable names. While
YesWorkflow does have methods to specify the link between the
variable name and the user-defined identifier, it does not check that
the annotation references an actual variable.

4.2 Issues With Retrospective Provenance

Data dependencies. There can be gaps in the noWorkflow de-
pendency graph (when exported to prolog). Specifically, function
returns do not always link back to correct variable. Furthermore, an
object that is modified (e.g via a list.append call) is not always
captured in the dependency graph.

Objects in objects. When an object has a field that is itself an
object, the dependencies in noWorkflow are often handled at the
highest level meaning that a change to a sub-object counts as a
change to the parent object.

No script name. Same variable names may be used in different
scripts. The script names along with the line numbers would be
required to unambiguously identify a variable. Currently, noWork-
flow does not capture the script name.

5. Framework and System
We introduce a new framework and provide a prototypical imple-
mentation. The logical architecture of our proposed framework is
shown in Fig. 4. This framework has four primary components: (i)
Prospective Provenance Generator, (ii) Retrospective Provenance
Generator, (iii) Provenance Integrator, and (iv) Provenance Store.
We now describe these components in detail.



For each invocation of a function
Find return identifier (say X)
Find variable V, whose value is returned
Find line L, where V was modified last
Find variable Z, which was assigned to V
Add a new identifier Y with V and L
Add dependency X to Y
Add dependency Y to Z

Figure 5. Sketch of dependency repair for missing dependencies
of function returns.

The Prospective Provenance Generator generates the prospec-
tive provenance using the user-specified names and the mapping
between these identifiers and the variables used in the script. In our
current implementation we used YesWorkflow for this component.
YesWorkflow provides the prospective provenance using the user-
specified annotations. Because YesWorkflow is language-agnostic
and can be utilized for various scripting languages, e.g., Python, R,
and MATLAB, it does not currently provide such a mapping.

The Retrospective Provenance Generator executes a script
and captures its retrospective provenance. As this component needs
to execute the workflow, it is difficult to have a technology-agnostic
tool. We are using noWorkflow for Python scripts which captures
the retrospective provenance using the variable names used in the
script. Using this framework, tools for retrospective provenance can
be integrated as they become available.

The Provenance Integrator integrates prospective and ret-
rospective provenance and stores them in the provenance store.
In our current prototypical implementation, this component (i)
parses the script and generates the map between the annotations
and the variable names using the relation map(X, Y), where X is
the variable name and Y is the user defined annotation, (ii) con-
verts the prospective provenance into wDep(Xw, Yw), wData(Dw, Vw),
and wProcess(Pw, Nw), where Xw depends on Yw, Dw is data
artifact identifier & Vw is its value, Pw is process identifier &
Nw is process name, and Xw (similarly Yw) is either a data ar-
tifact or a process, (iii) repairs the dependency gaps in the retro-
spective provenance (discussed in the next section) and converts
retrospective provenance into iDep(Xi, Yi), iData(Di, Vi), and
iProcess(Pi, Ni), where the attributes are defined as they are in
the prospective provenance, and (iv) abstracts retrospective prove-
nance based on the prospective provenance and stores the depen-
dencies into iDepAbs(Xi, Yi).

The Provenance Store stores D-PROV compliant prospective
provenance, retrospective provenance, and the mapping between
them. It also allows users to interactively query provenance data.
An important feature is that users can query retrospective prove-
nance based on the prospective provenance (i.e., using the anno-
tations they provided). In our current prototypical implementation,
we store the provenance data as Datalog facts and allow interactive
queries using DLV Datalog.

5.1 Dependency Repair
The Provenance Integrator repairs the dependency gaps dis-
cussed in Section 4.2 in the retrospective provenance generated by
noWorkflow and computes the abstract retrospective provenance.
A sketch of the dependency repair algorithm for missing depen-
dencies of function returns is shown in Fig. 5. Fig. 10 shows the
modified retrospective provenance graph of the running example
with dependency gaps fixed.

(1) nodeInt(X) :- map(X,_).
(2) iDepTC(X,Y) :- iDep(X,Y).
(3) iDepTC(X,Y) :- iDepTC(X,Z), iDep(Z,Y).
(4) pDep(X,Y) :- iDepTC(X,Y), nodeInt(X),

nodeInt(Y).
(5) depExists(X,Y) :- pDep(X,Y), pDep(X,Z),

pDep(Z,Y), X != Z, Y != Z.
(6) iDepAbs(X,Y) :- pDep(X,Y),

not depExists(X,Y).

Figure 6. Algorithm to abstract noWorkflow retrospective prove-
nance based on YesWorkflow prospective provenance.

tFileAnnot(X) :- wDep(X,_), wData(X,V),
V="temperatureDataFile".

tFileName(V) :- tFileAnnot(X), map(X,Y),
iDepAbs(Y,_), iData(Y,V).

Figure 8. Query to find actual temperature file used in an execu-
tion.

wID(X) :- wDep(X,_), wData(X,V),
V="plot".

iID(V) :- wID(X), map(X,Y), iData(Y,V).
lineage(X,Y) :- iDepAbs(X,Y), iID(V).
lineage(X,Y) :- iDepAbs(X,Y), lineage(Y,_).

Figure 9. Query to find the actual temperature file used in an
execution.

5.2 Abstract Retrospective Provenance
Fig. 6 presents the algorithm we developed to abstract noWorkflow
retrospective provenance data based on the YesWorkflow prospec-
tive provenance data. In line 1, it selects all the variable names an-
notated in YesWorkflow. Lines 2 and 3 compute the transitive clo-
sure of all the dependencies in repaired retrospective provenance.
Line 4 computes all the potential dependencies. Line 5 captures
which redundant dependencies which should be removed and line 6
computes the final list of abstracted dependencies. Given the retro-
spective provenance shown in Fig. 10, this algorithm computes the
abstracted retrospective provenance shown in Fig. 7.

Complexities. Consider prospective provenance with Nw nodes
representing variables and Ew edges representing variable depen-
dencies. Similarly, assume the retrospective provenance has Ni

nodes representing variable invocations with values and Ei edges
representing variable value dependencies. In general, | Nw | �
| Ni | and | Ew | � | Ei |. Thus, the space required to store both
the prospective and retrospective provenance is O

(
Ni + Ei

)
. In a

worst case scenario, the Dependency Repair module would review
all Ei edges and add another Ei so the space complexity remains
O
(
Ni +Ei

)
and time complexity is O

(
Ei

)
. As the Abstract Ret-

rospective Provenance module “overlays” the Ew edges over Ei

edges to find the relevant subgraph of Ei, the space requirement
is same as prospective provenance and thus space complexity still
remains to be O

(
Ni+Ei

)
. Because we compute the transitive clo-

sure of the Ei edges, the time complexity would be O
(
E2

i

)
.

6. Query
To answer the query discussed in Section 1, we need to find out
which temperature file was used in an execution and then compare
the files among various runs. The query in Fig. 8 would find the
temperature file name used in an execution. This illustrates how
retrospective and prospective provenance are integrated to enable



55 read_file28 data1.dat
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132 model2
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Figure 7. noWorkflow retrospective provenance graph after abstracting based on the yesWorkflow.

users to ask queries with the annotations used in YesWorkflow and
compute answers using the provenance data captured by noWork-
flow. In the sample workflow shown in Fig. 2, tFileName(V) from
Fig. 8 will have value data1.dat.

Additionally, suppose a user wishes to find the retrospective
lineage of the final product—the plot. The query shown in Fig. 9
could be used answer such query. This also illustrates the need
for integrating both the prospective and retrospective provenances.
lineage(X, Y) would contain the retrospective lineage for the final
data product “plot”.

7. Conclusion
We have showed in this paper how the retrospective provenance of
script executions generated using noWorkflow can be mapped onto
a high-level of abstraction by using the workflow specification gen-
erated by YesWorkflow. We have also showed how the mapping
exercise enables answering provenance queries over script execu-
tions. The work reported is still ongoing development. We intend
to assess the mapping specified in the context of other applications
with larger scripts. We also note that the work reported in this paper
is related to another ongoing (and complementary) work [14] that
aims to capture the provenance of data artifacts used and generated
within scripts and stored on the file system using YesWorkflow.

As part of future work, we want to (a) extend this framework to
support other tools generating retrospective and prospective prove-
nance for various scripting languages, (b) study the query perfor-
mances using larger scientific workflows with bigger data sets, and
(c) validate the links that this framework establish between retro-
spective and prospective provenance.
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flow: A user-oriented, language-independent tool for recovering work-
flow information from scripts. CoRR, abs/1502.02403, 2015.

[16] P. Missier, S. C. Dey, K. Belhajjame, V. Cuevas-Vicenttı́n, and
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Figure 10. noWorkflow retrospective provenance graph after applying the dependency repair. This provenance graph has no dependency
gaps.


