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Abstract
In recent years several hardware and systems fields have made ad-
vances in technology that open new opportunities and challenges
for provenance systems. In this paper we look at such technologies
and discuss the implications they have for provenance. First, we
discuss processor and memory controller technologies that enable
fine-grained lineage capture, resulting in more precise and accurate
provenance. Then, we look at programmable storage, 3D memory
and co-processor technologies discussing how lineage capture in
these heterogeneous environments results in richer and more com-
plete provenance. We finally look at technological advances in the
field of networking, namely NFV and SDN, discussing how these
technologies enable easier provenance capture in the network.

Categories and Subject Descriptors 500 [Information systems]:
Data provenance

General Terms provenance, lineage

Keywords provenance, lineage

1. Introduction
The vision for provenance research is to ultimately make prove-
nance pervasive, seamless and a fundamental construct of future
digital systems. A decade’s worth of research in building general
purpose systems has worked towards this vision by taking a purely
software centric approach to capturing and processing provenance
data. However, the main limitation of these systems is that they cap-
ture coarse-grained, domain specific and in many cases incomplete
provenance data, thereby leading to provenance that lacks precision
and completeness. These limitations arise mainly because software
based approaches [20–22] trade-off capture granularity for runtime
performance and capture completeness for system complexity. We
believe that for future systems to be useful in the real world these
limitations must be mitigated by capturing more precise, accurate
and complete provenance. How do we implement systems that have
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these properties while keeping overheads low? The answer to this
question may be in some of the recent advances in hardware tech-
nology.

Precision Precise provenance provides better confidence in the
lineage of data and computations. This requires capturing fine-
grained, high fidelity provenance. An interesting aspect to observe
with provenance capture is that it naturally overlaps with other ar-
eas of computer science that perform similar functions such as de-
bugging, logging, auditing and deterministic record/replay. While
traditionally such functions have been implemented in software,
recent trends in technology suggest that there is increasing support
for these functions in hardware mainly because hardware imple-
mentations impose negligible runtime overheads on user applica-
tions. For example, modern Intel processors provide hardware as-
sistance for instruction level program tracing while incurring a neg-
ligible amount of runtime overhead [30]. The traces captured with
this technology can be used to construct byte level lineage, time
travel to a past program state or determine linkages between data
artifacts more accurately. Similarly, deep packet inspection hard-
ware allows us to capture and inspect individual network packets at
line rate, giving us the ability to track the lineage of every packet in
a network. As implementers of provenance systems we can lever-
age the fine-grained capture capabilities these technologies provide
for more precise and accurate provenance.

Completeness Completeness of provenance requires systems that
capture lineage information in two dimensions: within hosts and
across hosts.

Within hosts, we are observing a major change in hardware
architectures as energy usage and application performance be-
come critical aspects of computers. The traditional way of thinking
about computing on a host has been CPU centric where data is
fetched from storage or memory, moving it closer to the CPU on
which computation is performed. However with the increased pro-
grammability offered by modern devices such as SSDs and memory
interfaces we are seeing a change from the traditional form of com-
puting. For example, a wealth of research is available in the area of
Near Data Processing (NDP) wherein specific computations can be
directly executed on the low frequency wimpy cores used in stor-
age devices [6]. This trend can also be observed in domains using
HPC, such as scqience and financial modelling where applications
offload computations onto co-processors to exploit the high degree
of parallel processing capabilities present in them. Thus for prove-
nance to be complete and pervasive, systems should be adapted to
capture provenance in heterogeneous environments present within
hosts.



Across hosts, provenance systems have generally lacked observ-
ability. This is mainly because network devices such as routers,
load balancers, firewalls etc. have traditionally been implemented
using specialised hardware, making integration of provenance sys-
tems with these devices hard. However, today, as scalability and
network service management become critical, there is more empha-
sis on using commodity hardware that run software implementing
various network functions. For example, Network Functions Virtu-
alisation (NFV) is a recent advance in network architecture where
several important networking functions can be decoupled from pro-
prietary hardware and run in software [3]. This allows provenance
systems to be easily integrated with networking software, thereby
enabling network provenance capture and making provenance more
complete.
In the rest of this paper we identify specific technological advances
that we can leverage, explain why they are interesting for the prove-
nance community, discuss various challenges these technologies
impose and look at some exciting use cases they enable. Our aim is
to stimulate debate, capture the imagination of the researcher and
identify opportunities/challenges. To this end, we focus on three ar-
eas (i) Fine-grained capture, (ii) Heterogeneous computing and (iii)
Network provenance, that are traditionally under-represented in the
collection of provenance information.

2. Fine-grained capture
Fine-grained provenance capture provides a detailed image of an
application’s execution. The captured data can include details about
individual instructions executed, memory read/write operations and
system calls performed. In the sections below we look at two main
hardware technologies, (i) Processor Trace and (ii) Programmable
Memory Controllers, that enable us to capture fine-grained prove-
nance on a host.

2.1 Processor Trace
With the end of Dennard’s scaling we have seen a fundamental
shift in processor architecture. To keep up with Moore’s law the
industry has been forced to change processor design by integrating
multiple cores while keeping frequency approximately the same.
To obtain improvements in application performance developers
have had to exploit the inherent parallelism offered by multi-core
architectures, thus increasing the complexity of applications and
making debugging/performance tuning large applications a difficult
problem.

For years debugging and performance optimisation of appli-
cations have been carried out using software based tracing and
instrumentation techniques. But the industry has quickly realised
that a purely software based approach is not scalable and trac-
ing/instrumentation cannot be always-on since the run-time over-
head imposed on applications can be quite high.

Modern processors address this problem by providing profiling
and debugging support in hardware. To this end, some recent hard-
ware assisted debugging technologies currently being adopted by
the industry are Intel Processor Trace (Intel PT) and ARM Core-
sight, both of which enable the capture of fine-grained program
traces with minimum performance impact [30, 31]. This program
trace data along with hardware performance counter information
stored in special-purpose registers provide the ability to build pow-
erful debugging and performance analysis tools.

This bodes well for provenance as systems can leverage these
capture technologies. Intel’s Processor Trace technology is espe-
cially of interest for provenance capture and is discussed in detail
below.

2.1.1 Intel PT
Processor Trace (PT) is an Intel architecture extension that captures
software execution traces using dedicated hardware with minimal
performance perturbation. The initial implementation of PT cap-
tures program control flow information. The trace information is
collected in data packets which record details of program flow such
as conditional branches taken/not taken, target instruction point-
ers for indirect branches, exceptions, interrupts and asynchronous
events along with other contextual and timing information. Intel
PT also provides control and filtering capabilities to customise the
trace data collected. These can be programmed via a set of model
specific registers (MSRs). The traces generated are output to op-
erating system provided circular buffers in memory. Applications
having access to the trace data can decode the data packets using a
decoder library and reconstruct the exact execution of programs.

Given the usefulness of such debugging functionality a more
recent technology offered by Intel is Trace Hub, which is intended
as a complete system debug solution in hardware [29]. Trace Hub
hardware is a set of functional blocks connected via PCI that can
receive trace data from multiple sources such as internal hardware
signals, performance counters, software traces such as PT and ap-
plication/OS generated output. The data from these sources are or-
dered, timestamped, encoded and sent to a user configured destina-
tion such as memory, USB or MIPI PTI port.

Applicability to provenance With instruction level traces we have
the lowest level view of what happened during program execution.
This allows us to time travel back to a previous program state
and look at the runtime context around that state. This capability
allows us to reason about program behaviour, determine causes for
program crashes or debug stack corruptions, thus enabling a variety
of uses for provenance in debugging and troubleshooting.

With merely coarse-grained (system call level) provenance cap-
ture it is not possible to accurately determine dependencies between
data inputs and outputs. However, when system call information is
combined with PT trace data and program inputs, we have accu-
rate and precise information required to retrospectively determine
data flow within the program, thereby allowing us to eliminate false
positive dependencies between data. The added advantage with this
approach is that data flow analysis can be decoupled from the ac-
tual program execution and taken off-host for processing or done
lazily during query time.

Challenges Precision and completeness are traded off with per-
formance when implementing Intel PT tracing. The mechanism can
generate vast amounts of data quickly, approximately 200 MB/s per
core running at 1600 MHz. However, it comes at the cost of im-
pacting the the compute path as it results in processor slowdown.
Furthermore, the storage footprint of PT traces may directly affect
storage capacity and limit bandwidth especially when full PT data
capture is enabled for multiple machines in a cluster and taken off
host for processing.

The data generated by Intel PT is already compressed, for ex-
ample, conditional branches generate a single bit to indicate taken
or not taken. Therefore standard compression techniques may not
be effective. This opens up some interesting research opportunities
in storing, processing and querying such data for future provenance
systems that use this technology.

Finally, the data gathered using Intel PT is low level (instruction
level) and does not contain the high level semantics that normal
users would care about. Therefore, for many users this low level
view of their application may not be useful. An interesting research
problem is to try and map high level semantic concepts to these low
level traces.



2.2 Programmable Memory Controllers
Provenance systems that use system/library call interception mech-
anism to collect provenance lack the ability to observe memory op-
erations performed by applications since memory operations typ-
ically bypass the OS system call interface. However, all memory
read and write operations are handled and managed by the mem-
ory controller. The memory controller runs firmware that imple-
ments several sophisticated functions, with read/write management
being one of the functions. The firmware running on most com-
mercial memory controllers is generally not programmable as the
firmware is proprietary. However, previous research shows that al-
lowing memory controller’s firmware to be programmed based on
system and application requirements improves its versatility and ef-
ficiency [15]. This ability can be exploited by provenance systems
to run custom memory read/write capture functionality as part of
the controller firmware, giving systems observability into applica-
tion’s memory operations.

Applicability to provenance Programmable memory controllers
can be used as a viable side channel for provenance collection. The
advantage of using such side channels for provenance capture is (i)
There is zero overhead on the application developer and, (ii) The
entire system (applications and OS) can be completely agnostic
about provenance collection.

In addition to the advantages mentioned above, this technology
enables several use cases. The provenance collected can include
individual load/store operations performed by applications and/or
snapshots of application memory state. This data can be used to
reason about system behaviour, for example, recent work shows
that memory heat maps can be used to learn about normal system
behaviour and deviations in behaviour can be detected by com-
paring memory heat maps obtained from subsequent executions
[23]. Load/store patterns or memory heat maps can also be used
for performance optimisations (e.g. accessing contiguous memory
regions is faster). Memory state/deltas captured can allow debug-
gers to time travel and replay execution from arbitrary points in the
code.

Challenges As with tracing, enhanced completeness and preci-
sion come at a large storage footprint cost. The data collected by
memory controllers is at a low level of abstraction and the size
of data captured can grow rapidly, thus affecting storage capacity.
Provenance systems cannot persist this data forever.

Secondly, affecting the performance of the memory controller
negatively may impact the entire system since it is in the critical
path of all programs executing on the machine. Completeness can
be compromised if only a subset of accesses are recorded.

Finally, the load/store addresses captured by the memory con-
troller are physical addresses, therefore we may need additional
information from the OS to determine virtual to physical address
mappings and associate load/store operations to individual appli-
cations. Without additional system-level information mapping ac-
cesses to identifiable abstractions completeness will be compro-
mised.

3. Heterogeneous Computing
Modern hardware architecture has become increasingly heteroge-
neous, comprising of multiple processing elements (typically run-
ning different ISAs), each specialised to perform specific functions.
This shift to heterogeneous architectures mainly began with the in-
troduction of user programmable GPUs about a decade ago as de-
velopers sought improvements in performance of their applications
(especially in HPC). Today, a variety of GPU type devices or co-
processors are commonly used in various domains.

However, heterogeneous system architecture goes beyond just
co-processors. Currently, there is a resurgence in Near Data Pro-
cessing (NDP) research [6]. NDP changes the computational
paradigm by moving computation closer to where data resides.
This provides benefits in terms of reduced power consumption and
increased performance as data does not have to move back and
forth between storage and CPU. Today, we are seeing the emer-
gence of devices such as programmable storage/memory, which
allow custom code to be executed directly on the device, closer to
data [14, 16].

In the sections below we will look at three specific technologies
in heterogeneous computing, (i) Programmable SSDs, (ii) 3D Pack-
aged Memory and (iii) Co-Processors, along with the implications
they have for provenance completeness.

3.1 Programmable SSD
Modern SSDs contain several low frequency CPUs running firmware
that perform low level functions such as error-correction, wear lev-
elling, read/write caching and encryption to name a few. However,
most SSD firmware is proprietary and does not allow developers to
re-program or add new functionality. Recent work exposes new in-
terfaces that developers can use to program SSDs [8, 9, 14]. These
interfaces allow application developers to offload certain applica-
tion specific functionality to run directly on the SSD. This offers
huge improvements in bandwidth, access latencies and reduces
power consumption as data does not have to move back and forth
between the SSD and the host. This basic primitive also allows
higher level functions such as implementing high performance data
stores, data intensive computing on the SSD, kernel bypass for user
space applications and semantic extensions.

Applicability to provenance Provenance-aware systems typically
run on the host CPU either as part of the operating system or the
application runtime. When data transformations are performed by
applications directly on the SSD, the transformations will not be
visible to the provenance collection system running on the host
CPU, making provenance capture incomplete. Collecting and in-
tegrating provenance in these heterogeneous environments makes
provenance capture more complete.

Challenges The compute units within SSDs have limited pro-
cessing power. This is likely to remain the same in future due to
low power consumption requirements. Adding provenance capture
functionality to run on the SSD can incur overheads on I/O per-
formance, negating the performance benefits provided by near data
processing. The other challenge is in integrating and storing the
captured provenance data. Provenance capture and processing com-
ponents should somehow link the provenance captured on the host
(CPU) with that captured on the SSD. Furthermore, block-level
capture may not be granular enough to increase overall provenance
precision. Tackling this issue requires identifying (and persisting)
changed byte-ranges in blocks. This is a spatially and temporally
expensive exercise.

3.2 3D Packaged Memory
Over the last couple of decades we have seen a growing disparity
between processor and off-chip memory speeds. In the industry this
is referred to as the “Memory Wall” problem where access to the
memory subsystem has been drastically affected in terms of both
bandwidth and latency [26]. The problem has been further aggra-
vated due to multi/many-core processors as they have imposed in-
creased demands on the processor/memory interface. This has led
to research in 3D packaged memory where two or more RAM chips
are stacked one on top of each other and connected using Through-
Silicon Vias (TSV) [24, 25]. 3D memory technology increases the
memory capacity and alleviates the memory bandwidth and latency



problem. In addition, 3D packaging also offers the possibility of in-
tegrating compute logic directly with one or more memory layers.
This once again changes the computing paradigm as it opens up
the possibility of near-memory computations. This idea is not new
and there is a body of research available on Processing In Memory
(PIM) [17, 18]. As research in NDP and PIM evolves it is inevitable
that we will have fully-programmable memory architectures, where
application developers can run custom code directly near memory.

Applicability to provenance Similar to programmable SSDs,
with 3D packaged memory the provenance collection system run-
ning on the CPU will lack visibility into the computations and data
transformation that have taken place on the compute logic close to
memory, thereby making provenance collection incomplete. Col-
lecting provenance in this computational environment improves the
completeness of provenance.

Challenges The Processing In Memory (PIM) compute paradigm
can involve having fixed-function compute logic directly integrated
with memory or expose the compute logic as a fully-programmable
layer to developers [19]. Fixed-function PIMs may not provide the
flexibility to run provenance capture on the compute layers near
memory as it will require implementers to disclose provenance as
part of code being executed. This poses provenance capture chal-
lenges for systems. However, there will be more flexibility in case
of fully-programmable PIMs as they provide similar programma-
bility as conventional processors. While PIMs can increase the
completeness and precision of provenance collection by allowing
applications to offload provenance-sensitive computations to PIMs
recording provenance information it is essential captured prove-
nance can be linked back to the original application to prevent se-
mantic identification issues as highlighted previously.

3.3 Co-Processors
There are several types of co-processor technologies prevalent to-
day in computing. Two of the most commonly used technologies
are General-purpose Graphic Processing Units (GPGPU) and Many
Integrated Cores (MIC). Co-processors offer a high degree of par-
allel processing capabilities as they use several hundreds of simple
architecture, low frequency cores. These devices are typically con-
nected to the CPU through a high speed interface such as PCIe. To
utilise the co-processors, developers have to explicitly copy data
from CPU memory to co-processor memory and invoke computa-
tional kernels to process the data. After performing the computa-
tions, the results are copied back to the CPU.

This computational paradigm is commonly used in the HPC ap-
plications as the workloads are highly parallel and compute heavy.
However, we are seeing an increased use of co-processors today in
big data and machine learning type workloads [27]. This trend is
expected to continue as applications from other domains find the
massive parallel processing capabilities present in co-processors
useful.

Applicability to provenance Most co-processors have their own
memory. The computations and data transformations happening in
co-processor memory is typically asynchronous and not visible to
the operating system or the provenance collection system on the
host CPU. Also co-processors such as Intel Xeon Phi’s can mount
and use block devices attached to the external host system [28].
Any data updates made by the co-processor directly on the mounted
file system will not be visible to provenance systems running on
the host CPU. Therefore co-processors should be augmented to
run services that collect provenance. Collecting data lineage in
this computational framework makes provenance richer and more
complete.

Challenges Co-processors are used mainly to improve the per-
formance of applications. Capturing provenance in the critical path

especially at finer granularity can directly impact the performance
advantages these technologies provide.

4. Network Provenance
In recent years there has been a developing trend in the networking
community of systems which reduce the complexity of single enti-
ties in a network in favour of several smaller entities. Two results
of this trend are the technologies, Software Defined Networking
(SDN) and Network Functions Virtualisation (NFV) [3–5].

4.1 Software Defined Networking
Software Defined Networking (SDN) is an approach where the
control and data planes of the network are separated out entirely,
reducing the switching devices to dumb end points and moving
the routing and other control activities into dedicated hosts. This
separation of control and the availability of programmable systems
such as OpenFlow switches has resulted in recent work where
SDN is leveraged to capture provenance of individual packets for
network diagnosis [1].

4.2 Network Functions Virtualisation
NFV applies this same reduction of complexity approach to the
variety of special purpose devices such as firewalls, intrusion de-
tection devices, NAT translators which are implemented on custom
hardware running proprietary software. However as scalability and
management of these devices become critical, NFV endeavours to
implement these functions on virtual servers running on enterprise
hardware, thereby eliminating the tight coupling these functions
had with vendor proprietary hardware and software.

Applicability to provenance The shift towards commodity hard-
ware implementing important network functions provides the op-
portunity to run provenance systems as a service on these devices.
This also reduces the design and development effort as several
physically distinct devices can now be implemented as virtual de-
vices running on the same end-host server. Therefore, there is an
opportunity to collect richer, more complete provenance with lower
overhead and gain visiblity across hosts.

Challenges The major challenges associated with capturing
provenance in the context of NFV and SDN are centred around
the fact that these are still emerging technologies. Therefore at
the moment there is only moderate adoption outside of academic
contexts along with several inherent technological challenges to
overcome [2]. In particular, ensuring completeness across multiple
hosts requires synchronisation and co-ordination across all hosts
involved in a network transfer. Furthermore, precision is limited by
the observable information disclosed or observed at the end-host.

5. Use Cases
We outline three example use-cases highlighting the usefulness
of leveraging hardware for increased provenance precision and
completeness:

Real-time, always-on isolation of downloads: Employing
hardware leveraged provenance across an enterprise network al-
lows administrators to maintain a system-wide demarcation be-
tween trusted and untrusted data. Provenance information can be
utilised to ensure that downloaded data is always accessed and
modified in an isolated environment (e.g. a sandbox) to prevent
payload malware from accessing or modifying external system
state.

Feed-forward Computation: Collecting precise and complete
provenance renders feasible computation platforms where im-
provements in data or computation can be fed forward to update



existing outputs thereby ensuring that outputs always reflect trans-
formations of the most up-to-date input data.

Enabling Statistical Equivalence: Reproducibility in current
contexts is limited to the deterministic reproduction of an existing
computation. With precise and complete provenance information
we enable the creation of equivalence engines that can rely not only
on deterministic inputs and outputs and program control flow but on
the data provenance and control flow provenance collected during
the creation of those outputs. This allows practitioners to broaden
the definition of reproducible equivalence from the narrow aspect
of equivalent input-output pairs.

6. Discussion
Over this paper we have seen how technology advances provide
both opportunities and challenges for provenance. Hardware tech-
nologies that enable fine-grained capture result in provenance that
is more precise and accurate but result in the collection of vast
amounts of data that is challenging to process and store.

Heterogeneous architectures provide new opportunities for
provenance collection resulting in richer more complete capture
but at the moment there is little effort to build systems that capture
provenance in these computational frameworks.

Network architecture and management of networks are becom-
ing more software centric as we have seen with NFV and SDN
technologies. This augur’s well for provenance systems as these
technologies make it easier to integrate and capture provenance in
the network, where up until now we have had limited observability.
However these networking technologies are currently at a fledgling
state, thereby creating integration challenges for provenance sys-
tems.

Our vision for provenance is that it ultimately becomes ubiq-
uitous, transparent and easily accessible for users or applications.
We have shown that to realise this vision, we as implementers of
systems should be cognizant of advances in technology, leverage
the opportunities provided by these technologies and address the
challenges technologies pose.

7. Conclusion
In this paper we discussed several technological advances that cre-
ate both opportunities and challenges for future provenance sys-
tems. We talked about a few exciting technologies that enable fine-
grained provenance collection and how leveraging these technolo-
gies makes provenance more precise and accurate. We also dis-
cussed areas that are currently under-represented in provenance and
how lineage capture in these areas makes provenance more richer
and complete.
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