Language-integrated Provenance in Links

Stefan Fehrenbach

James Cheney

University of Edinburgh

stefan.fehrenbach®@ed.ac.uk

Abstract

Today’s programming languages provide no support for data prove-
nance. In a world that increasingly relies on data, we need prove-
nance to judge the reliability of data and therefore should aim for
making it easily accessible to programmers. We report our work
in progress on an extension to the Links programming language
that builds on its support for language-integrated query to support
where-provenance queries through query rewriting and a type system
extension that distinguishes provenance metadata from other data.
Our approach aims to work solely within the language implementa-
tion and thus require no changes to the database system. The type
system together with automatic propagation of provenance metadata
will prevent programmers from accidentally changing provenance,
losing it, or misattributing it to other data.

1. Introduction

Provenance information, knowing where data came from, is crucial
in a variety of situations. Over the last few years, researchers
extended databases to store, query, and propagate provenance
information. Such techniques are strongly motivated by applications
to data integrity and authenticity in open, collaborative settings,
such as Web databases or data integration systems where data are
combined from numerous sources of variable quality.

At the same time, advances in language-integrated query bridge
the gap between relational databases and programming languages [9,
16]. However, so far these avenues of research seem to take little
notice of each other. In particular, there has been little investigation
of how to write programs that interact with a database that provides
support for provenance. Most applications where provenance is
needed do not just involve a database in isolation; for example,
a typical web application usually involves at least three separate
layers, each controlled by a different language such as server-
side middleware (e.g. Java, Python, PHP), database (SQL), and
Web client (JavaScript). We think the interaction of programming
languages with provenance can be greatly improved by leveraging
ideas from language-integrated query and Web programming.

We extend the research programming language Links [9] with ex-
plicit support for provenance. Links was originally designed to sup-
port writing three tier web applications in a single language. Links
programs can run on the client, the server, and query the database

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.

TaPP 2015, July 8-9, 2015, Edinburgh, Scotland.

Copyright remains with the owner/author(s).

jcheneyQinf.ed.ac.uk

using list comprehensions that translate to SQL; furthermore, its
type system statically checks that the communication between these
layers is well-behaved. Links provides type-safe language-integrated
querying, as described elsewhere [8, 15]. In particular, the type sys-
tem of Links checks statically that embedded query expressions will
generate a single SQL query.

To illustrate, imagine the following scenario: Consider Pear Com-
puters, a major international company specializing in high-end mu-
sic players, smartphones, and smartwatches. We are developing
a website on behalf of Pear Computers that features customers’
comments to promote products. Figure 1 illustrates this scenario
using Links. We have a table top_comments that aggregates com-
ments on all Pear Computers products from a variety of sources
and somehow keeps track of where every comment came from. The
table declaration tells Links about the existence of the table, and
the names and types of its columns. On the product page for Pear’s
new and highly anticipated smartwatch, the pWatch, we only want
to show comments that relate to watches, not phones or other prod-
ucts. The watch_comment function identifies comments as relating
to watches by a crude heuristic: they originate from a table called
watch or contain the word pWatch. We render a single quote with
the render_quote function which makes use of Links’ literal XML
support. The quotes_list function ties it all together. It queries the
database with a query block that selects the text of every comment
in top_comments that is a watch comment. The query is guaran-
teed to generate a single SQL query at run time: it calls a function
watch_comment that only performs operations that are allowed on
the database'. Finally, it returns the XML representation of a list of
all the watch comments, which can be embedded in an HTML page
by other parts of the program.

Now suppose that we would like to be able to remove comments
that do not comply with the Pear Computers company policy of only
ever saying how innovative and awesome their products are. In the
admin panel, we would like to render comments with a delete button
next to them. Obviously, we have to track where the comments came
from to be able to delete them. Also, keep in mind that we are dealing
with a legacy system in our example: The top_comments table is
automatically generated, so it would not help us to delete rows
from there. Instead, we have to delete the original data. Fortunately,
someone thought ahead and included the necessary information in
the origin_* columns. However, to add the delete button in Links we
would now need to change several parts of the program to propagate
the origin information to the place where it is needed.

This seems like a perfect fit for where-provenance [2—4], in
which each data value in the result of a query carries an annotation
consisting of either a reference to the source of the data in the input
(e.g. a triple containing the table name, field name and row id), or
a placeholder called “bottom” (L) indicating that the value was

I Links contains two different function types, to distinguish functions that
can be run only on the server (A ~> B) from functions that can be run on
the database or server (A -> B).

var top_comments = table "top_comments” with
(id: Int, text: String,
origin_table: String, origin_column: String, origin_row: Int);

sig watch_comment : ((text:String, origin_table:String|_)) -> Bool
fun watch_comment(c) {
c.origin_table == "watch” || c.text =~ /. *pWatch.*/

}

sig render_quote : (String) ~> Bool
fun render_quote(c) {

<blockquote>{stringToXml(c)}</blockquote>
 }

sig quotes_list : () ~> Xml
fun quotes_list() {
var comments = query {
for (c <-- top_-comments)
where (watch_comment(c.text))
[(text = c.text)]

{for (c <- comments) render_quote(c.text)}

Figure 1. Render a list of quotes from the database.

created by the query. We propose to extend Links to explicitly
support provenance, and call the resulting language PLinks. In
PLinks we can implement delete buttons using where-provenance
as shown in Figure 2. The prov-part of PLinks’ table declaration
contains information on how to compute provenance for columns.
This is what we use as the text column’s provenance.

Having declared how to compute provenance, we can change the
type of watch_comment to accept a value of type Prov String, which
indicates that we expect a string argument that carries provenance.
The keyword prov gives access to provenance. It returns a record
with three fields: relation, column, and row that correspond to the
three components of a where-provenance triple. As before, we
consider comments to be about a watch, if they originate from
a relation called watch (now accessed using (prov c).relation) or
the text itself (accessed via the keyword data) contains the word
pWatch. We add a new function named delete_quote which uses the
text’s provenance to delete it from the original table.? This function
is called when admins click the delete button that is emitted in
render_quote.

We could write a program to do the same thing in plain Links. In
fact, in Section 3.2 we describe how to translate PLinks programs
into Links programs. However, language-integrated provenance has
some benefits over handling provenance manually or in the database:
Provenance is not data. Provenance is metadata. A provenance-
aware type system like the one we describe in Section 3.1 ensures
it is handled accordingly. Programmers who have a value with
provenance type can be certain that it carries provenance that
ties it back to its origin in a database. Provenance can never be
lost, invented, or arbitrarily manipulated on the way. Precise types
can restrict the operations on data to those that are meaningful in
the presence of where-provenance, thus eliminating the need for
placeholders for data of unknown provenance (or so-called “bottom”
values). Language-integrated query already gives uniform access to
data in the programming language and data from the database. We
extend that to natural access to provenance. Glavic et al. showed that
implementing provenance through rewriting queries in the database
is possible [12, 13]. If we rewrite programs before interaction with

2We use table_from_name to get the actual table from its name.

var top_comments = table "top_comments” with
(id: Int, text: String,
origin_table: String, origin_column: String, origin_row: Int)
prov (text = fun (c) { (relation = c.origin_table,
column = c.origin_column,
row = c.origin_row) });

sig watch_comment : (Prov String) -> Bool
fun watch_comment(c) {
(prov c).relation == "warch” || data c =~ /. *pWatch.*/

sig delete_quote : (Prov String) ~> ()

fun delete_quote(c) server {
delete (r <-- table_from_name((prov c).relation)
where (r.id == (prov c).row) }

sig render_quote : (Prov String) ~> Bool
fun render_quote(c) {

<blockquote>{stringToXml(data c)}</blockquote>
<button |:onclick="{delete_quote(c)}" >delete</button>

 }

sig quotes_list : () ~> Xml
fun quotes_list() {
var comments = query {
for (c <-- top_-comments)
where (watch_comment(c.text))
[(text = c.text)]

{for (c <- comments) render_quote(c.text)}

Figure 2. Programming with provenance support.

the database system, we get provenance support for any unmodified
relational database management system for free.

This paper describes work in progress. In the next section, we
describe our technical strategy and summarize experience with a
preliminary implementation. Section 3 outlines our revised design
based on this experience. Section 4 describes related work, Section 5
details limitations and our future plans, and Section 6 concludes.

2. Technical approach and preliminary results

Query expressions in Links are based on the nested relational
calculus [5], a core query language that provides collection types
and comprehensions:

cla|(e1,e2) |ei|er+er|er=ea]|---
if e then e else ez
D|e1Uez|{e} | for (x + e) return e’

b € {int,bool,...} | t1 x t2 | {t}

e

T

Links queries use a similar syntax (extended with records) and uses
a normalization algorithm (explained by Cooper [8] and by Lindley
and Cheney [15]) to turn such query expressions into SQL, provided
the queries return flat records of values of base types. (Recent work
on guery shredding [6] shows how to lift this restriction, but hasn’t
yet been incorporated into the main version of Links.) Buneman et
al. [3] proposed a translation that maps an ordinary nested relational
query to one that propagates where-provenance information on all
parts of the source data to the output. We present a simplified version
of this translation: given a query expression e, we define P(e) to
be a query that propagates annotations on data values of base types

type checking
Section 3.1

rewriting
.
Section 3.2

Figure 3. From PLinks to SQL.

(integers, strings etc.) only, as follows:

Plz) = =z
Pl = (L)
P(ey opez) = (P(e1).1 op P(e2).1,1)
0p€{+7:7"'}

P(e.q)
P((e1, e2))
P(if e then e else e2)
P(0)
P(eerz) P(el)UP(eg)
P({e}) = {P(e)}
P(for (x < e) returne’) = for (z <+ P(e)) return P(e’)

P(e).q
(P(e1), P(e2))
if P(e).1 then P(e1) else P(e2)

The translation changes the types of the expressions as follows:
T(b) =bxtag T(mixm)=T(n)xT(r2) T{r}) ={T(1)}

where tag stands for the type of the provenance information, e.g.
triples of relation name, field name and row id. Given a query
expression e : 7 with free variables z1 : T1,...,Tn : Ty, its
translation ¢’ = P(e) has type T'(7) assuming the free variables’
types are adjusted to z1 : T(71), ..., Zn : T(mn).

We have used this translation as the basis of an initial attempt to
extend Links with provenance support. We modified the Links query
normalizer to perform the above translation on queries. However,
this approach seems to have some limitations that make it difficult
to combine provenance-aware queries with Links programs. For
example, since the translation changes the types of both the inputs
(e.g. table references) and results, using the translated query requires
fixing some convention for naming the additional provenance fields
of the tables. These must be added somehow to the database,
which imposes a space and maintenance overhead; moreover, the
translation requires annotations on all source data, and propagates
these annotations through the query eagerly, even if the user never
requests them. Moreover, Buneman et al.’s approach relies on a
special “bottom” value L to annotate parts of the result that were not
copied from the input but were instead created by the query. Finally,
Buneman et al.’s translation treats the provenance information as
pure metadata: it cannot be inspected by the query, nor can it be
manipulated or “forged”. However, once the provenance leaves the
query and is processed by the Links program, it becomes plain
data: the programmer can discard it, change it or fabricate it. Both
of these choices are questionable: it may be advantageous to be
able to inspect the provenance during a query, and it may also be
advantageous to be able to certify the integrity of the provenance
information (i.e. unforgeability) outside of the query.

These observations motivate a design that takes the eventual use
of the provenance information elsewhere in Links programs into
account, which will be the focus of the next section.

3. Design of PLinks

We describe PLinks, an extension of Links, that turns the program-
ming language into a provenance system in its own right. That is, not
only will it allow programmers to query provenance from an exter-
nal database with provenance support, but it will rewrite queries to
calculate their own provenance before they even reach the database.

This is work in progress and has not been implemented yet.
Figure 3 shows the compilation and execution model. We type
check PLinks programs using the type system extension described

in Section 3.1. We translate type correct programs to standard Links
using the source to source translation described in Section 3.2. From
there, Links uses its standard query normalization strategy described
by Cooper and by Lindley and Cheney [8, 15], to generate SQL
queries which can then be executed on any relational database.
The new language features of PLinks compared to Links are
as follows. PLinks adds a new type constructor Prov o, where o is
a base type, to represent values that carry where-provenance. To
access provenance, we add the keyword prov. Given a value of type
Prov o, it returns a record representing the value’s provenance. Such
a provenance record has three fields: relation, column, and row that
reflect the first, second, and third component of a where-provenance
triple, respectively. The related keyword data drops provenance,
returning just the data. We used most of these in the example in
Figure 2. Values of type Prov o can not be constructed directly by
the programmer. Instead, they are automatically generated by PLinks
(based on the prov clauses associated with table definitions). The
programmer only specifies how the provenance for a column is
derived. This is more flexible than in our initial attempt but possibly
not quite enough yet. See Section 5 for a discussion of limitations.

3.1 Type system

Links is a statically typed language. It has base types Int, Bool, and
String that correspond to their equivalents in databases. Records
have row types that describe the labels and types of the record’s
fields. Row polymorphism allows the same function to operate
on differently shaped records, as long as the necessary labels are
present. Effect types specify where function can be executed: on
the client, the server, or in database queries. The most important
aspect of Links’ type system, for our purposes, is the guarantee that
query blocks get translated to a single SQL query if they use only
database-executable functions and return a flat list of records with
fields of base type. Lindley and Cheney [15] describe Links’ type
system in detail.

PLinks extends Links’ type system to account for where-
provenance. Where-provenance is attached to a “cell” in a relation
and describes where the data was copied from. Provenance informa-
tion has meaning only in the context of the data it belongs to. The
type system should capture the special nature of provenance meta-
data. This allows programmers to rely on the accuracy of provenance
and prevents mistakes. There are four things in particular, that we
expect from a type system that properly deals with provenance: First,
provenance is attached to data and automatically propagated with
the data it belongs to. Second, provenance is immutable, thus the
type system should prevent accidental modification. Third, changes
to the data would invalidate where-provenance. Data in Links is
immutable, so this problem does not directly manifest, but it may
require caution when data in the database is updated. Fourth, it is
not possible for a programmer to forge provenance. Provenance is
always and only automatically derived from the database by PLinks.

Our type system design realizes these goals as follows. The type
constructor Prov indicates data paired up with its provenance. Values
of type Prov o, where o is a base type, carry provenance metadata.
The restriction of the type argument o to base types reflects that
where-provenance is attached to “cells”, not whole database rows.
This does not apply to some other forms of provenance (e.g. why-
provenance [4] based on row annotations), so we will need to revisit
this in future work.

Figure 4 shows simplified versions of the additional type rules we
need for PLinks, compared to Lindley and Cheney’s description of
Links’ type system [15]. The PROV rule allows us to read a value’s
provenance using the prov keyword. If M is an expression with
type Prov o we can read its provenance. Provenance is returned as
arecord (abbreviated PR) with fields relation, column, and row. For
the time being we represent relation and column by their names and

PR = (relation: String, column: String, row: Int)

ProOV DATA
M : Prov o M : Prov o
prov M : PR data M : o

TABLE

iel, peP, PCI 0; base type fp:<li:0i>—>PR

A Provo; i€ P
table ¢ with (I; : 0;) prov (I, = fp) : [<ll : {Ov i ¢ P>

(3

Figure 4. Additional typing rules compared to Links [15].

the row by an assumed numerical primary key. The data keyword
projects a value with provenance to just the data, thus the DATA rule
says that the data-part has type o if the term has type Prov o.

The TABLE rule introduces Prov types. As in Links, the program-
mer declares a table ¢ with some columns /; that contain values
of base types o0;. In PLinks, the additional prov clause allows pro-
grammers to declare a function f, for each of a subset [, of the
columns /;. This function will be used to compute the provenance of
a value of column p. It take a database row as its input and produces
a provenance record (PR) and needs to be database-executable. The
type of a table declaration is list of records with the declared fields.
Fields [, that appear in the prov clause have type Prov o,. Fields ;
without provenance have just type o;.

Note that all operations that would introduce “bottom” prove-
nance in Buneman et al.’s presentation of where-provenance are
ill-typed in PLinks. We have decided against adding a “bottom” con-
structor and corresponding type rule for now. It would weaken the
guarantees the provenance type gives us and it seems like most, if
not all, cases where it is useful can be covered by wrapping values
in an explicit representation of alternatives, like Haskell’s Either.

3.2 Translation

We intend to implement PLinks, as indicated in Figure 3, by
translating PLinks programs into Links programs. Thus, we need
to express the new keywords and types of PLinks in terms of Links
features.

As an example of the translation, we will translate the query
block in Figure 2. It refers to the top_comments table, filters out
tuples based on their provenance using the watch_comment function,
and finally returns the contents of the text column together with its
provenance. We translate this piece of PLinks code into the Links
code shown in Figure 5.

Types of the form Prov o are special during type checking. After
that, we replace them by record types with a data and prov field. The
data field has type o and will contain the actual data. The data field
has the usual provenance record type and will contain provenance
metadata. In the example, we see the translation of Prov o types in
the signature of watch_comment. Where there used to be Prov String
in Figure 2, there is a record type in Figure 5.

In the body of watch_comment we see how to translate the PLinks
keywords prov and data. Corresponding to the translation of the
Prov o type, they are simply translated into projections. Note that
the less restrictive record types, compared to Prov o, do not enable
programmers to circumvent the type system restrictions because we
only translate programs that have passed the more restrictive type
checker already.

So far, the translation was very straightforward syntactic sugar
on top of records. Thus, the meat of the translation has to happen
in creating these records. Indeed, we see that where we have just
a reference to top_comments in Figure 2, we have a whole nested

sig watch_comment :
((data: String,

prov: (relation: String, column: String, row: Int))) -> Bool
fun watch_comment(c) {

c.prov.relation == "watch” || c.data =~ /. #pWatch.*/
}
query {
for (c <-- (for (c_prime <-- top_comments)
[(id = c_prime.id,

text = (data = c_prime.text,
prov = (fun (c) { (relation = c.origin_table,
column = c.origin_column,
row = c.origin_row) })
(c_prime))])
where (watch_comment(c.text))
[(text = c.text)]

Figure 5. Translated query block from Figure 2.

SELECT
c.text AS text_data,
c.origin_column AS text_prov_column,
c.origin_table AS text_prov_relation,
c.origin_row AS text_prov_row
FROM top_comments AS c
WHERE c.origin_table = ‘watch’ OR c.text LIKE %pWatch%’

Figure 6. SQL query generated for the code from Figures 2 and 5.

for comprehension in Figure 5. This for comprehension attaches
provenance to the tuples of the top_comments relation. Columns
whose provenance we do not care about get copied directly. In the
example this is the id column and we omit code that copies the
origin_* columns, as they are not used. Columns with provenance,
in the example only text, are replaced by a record. The data
field contains the actual value. The prov field contains the value’s
provenance. The provenance is computed by calling the function
from the prov clause of the table declaration on each row c_prime.

Readers who are very familiar with Links might have noticed
that the type of the query block is [(text: (data: String, prov: ...))],
which is not legal in Links. Query blocks have to have flat relational
type, that is a list of records with fields of base type, whereas here
we have a list of records with fields of record type. The solution is to
flatten down the record for generating the SQL query, and build only
build it up after receiving the results from the database. There is a
version of Links that deals with nested collections [6] that contains
code to that end which we could port to mainline Links. Giorgidze
et al. [11] do similar things for any nonrecursive algebraic data type.
Alternatively, we could extend the translation described here to emit
the necessary post-processing step instead of extending Links.

Assuming a suitable flattening, Links will do its usual query
normalization and generate an SQL query similar to the one in
Figure 6. The actual normalization algorithm has been described
in detail elsewhere [8, 15]. A well-typed query block is guaranteed
to result in a single SQL query. This result carries over to PLinks
because where-provenance does not lead to nested collection types
in the query result. Every “cell” is paired up with at most one triple of
provenance metadata. Thus, Links will always generate a reasonable
query even when the input looks somewhat convoluted like the
nested for comprehensions, function applications, and intermediate
records and projections in Figure 5.

4. Related work

To the best of our knowledge, we are the first to propose supporting
provenance by translation within a programming language (leverag-
ing language-integrated query support) rather than by altering the
database system or extending it with stored procedures [1, 7, 12].
While we have focused on supporting provenance by translation
to SQL, our approach also should be able to cope with database-
side support for provenance, by generating queries in provenance
aware query languages such as Trio’s TriQL or Karvounarakis et
al.’s ProQL [14].

Corcoran et al. [10] developed SELinks, a version of Links ex-
tended with label-based security enforcement, including provenance-
like label propagation; this was implemented using a theory of type
coercions [17]. However, their approach relied on a user defined
type and stored procedures for storing and manipulating sets of
labels.

Glavic et al. [13] compiled this list of requirements that a
provenance system should implement: (1) support different kinds
of provenance, (2) support complex queries, by which they mean
a large subset of SQL if not everything, (3) complex queries over
provenance data itself, and (4) scale to large databases. Although
we have only considered where-provenance for the relatively simple
subset of SQL supported by Links to date, we believe our approach
can be extended to handle other forms of provenance and to handle
richer queries. In contrast to other approaches, we have a type
system that restricts operations to those that make sense in the
presence of where-provenance. Our approach addresses requirement
(3) for where-provenance in a new way. Regarding scalability, we
have not carried out a detailed experimental evaluation, and it will
be interesting to compare our approach with existing techniques
based on changing the database system or extending it with stored
procedures.

5. Future work

PLinks as described in Section 3 has not yet been implemented:
although we have a preliminary implementation of the where-
provenance translation from Buneman et al. [3], we have not yet
extended Links with the Prov type constructor, the prov and data
keywords, or the prov table modifier as described in Section 3. This
is the obvious first step before gathering experience, performance
evaluation, and revising the design.

Another area for future extension is database updates. When
writing data to a database we can refer to the data’s provenance and
thus implement provenance propagation across tables.

In our current design, we make programmers drop provenance
explicitly using the data keyword. In the future, we hope to insert it
implicitly when needed. This will reduce the amount of code that
needs to be adapted when adding provenance to a column.

Links has automatic type inference, but we currently require
programmers to annotate functions that deal with provenance. Type
inference for provenance might raise the question of polymorphism
with respect to provenance.

PLinks uses programmer-defined functions to map a row to a
columns provenance. This admits some flexibility in how exactly
provenance is stored. It is tempting to think that we can use this to
retrieve provenance for a record from another table like this:

table " with (id: Int, c : String) prov (c = fun (x) {
THE(for (p <-- external_provenance_table)
where (p.id == x.id)
[(relation = p.relation,
column = p.column,

row = p.id)])}

However, this requires some function THE with type ([r]) -> r for
some type record type r that is database-executable. Unfortunately,

no function with this type can exist in Links as it is, because it
would violate the guarantee that we create a single SQL query from
a query block. At its core, this problem seems be about expressing
foreign key relationships. If we were able to tell Links that some
columns uniquely identify a row in another table, Links could use
that information to just emit a join. How to encode such a restriction
in the type system remains is not yet clear to us.

When data of type Prov o leaves a query block, we attach
provenance metadata to it, whether it is ultimately needed or not.
Where-provenance is only a constant factor in increased memory
but other forms of provenance can result in larger overhead. This
may turn out to be a real problem. In that case, we might want to
consider lazy calculation of provenance. This would still require
storing enough provenance to be able to query the full provenance.
In particular, this raises the question of how to deal with a database
that changes between fetching data and retrieving its provenance.

We also aim to apply the approach described here to other forms
of provenance besides where-provenance, such as why-provenance
or how-provenance. Prior work by Corcoran et al. [10] and Glavic
et al. [12, 13] suggests that this should be possible, we intend to
explore extending PLinks with rewriting-based support for other
forms of provenance, possibly in concert with recent work on query
shredding [6].

Although Links is well-suited for prototyping provenance sup-
port, it is a research language with a small audience. To make our
work more accessible and useful, we plan to consider whether it is
possible to apply similar ideas to (subsets of) more mainstream lan-
guages that support comprehensions or language-integrated query,
such as F# or Python.

6. Conclusions

Provenance within (relational and other) databases has been investi-
gated extensively. However, all proposals to date involve significant
changes or extensions to the database system and either extend the
query language (SQL) or change the query results (or both). We
propose instead to support provenance at the programming language
level, by translating queries so as to propagate provenance informa-
tion. This strategy offers a number of possible advantages, including
stronger guarantees about the integrity of provenance within the
programming language, and the ability to make provenance-aware
programs portable across database backends (e.g. either generating
plain SQL for mainstream databases, or queries in a provenance-
aware query language if the database being used supports it.) This
paper reports on our preliminary implementation and proposes a
refined design based on experience so far; we outline a number of
possible directions for future work.

Acknowledgments

This research is supported in part by the by EU FP7 project
DIACHRON (grant number 601043) and by a Google Research
Award.

References

[1] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, Martin Theobald,
and Jennifer Widom. Databases with uncertainty and lineage. VLDB
J., 17(2):243-264, 2008.

[2] Deepavali Bhagwat, Laura Chiticariu, Wang Chiew Tan, and Gaurav Vi-
jayvargiya. An annotation management system for relational databases.
VLDB J., 14(4):373-396, 2005.

[3] Peter Buneman, James Cheney, and Stijn Vansummeren. On the
expressiveness of implicit provenance in query and update languages.
ACM Trans. Database Syst., 33(4):28:1-28:47, December 2008.

[4]

[5

=

[6

—

[7

—

[8

=

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and
where: A characterization of data provenance. Database Theory —
ICDT 2001, pages 316-330, 2001.

Peter Buneman, Shamim A. Naqvi, Val Tannen, and Limsoon Wong.
Principles of programming with complex objects and collection types.
Theor. Comp. Sci., 149(1):3-48, 1995.

James Cheney, Sam Lindley, and Philip Wadler. Query shredding:
Efficient relational evaluation of queries over nested multisets. In
Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, SIGMOD 14, pages 1027-1038, New York, NY,
USA, 2014. ACM.

Laura Chiticariu, Wang Chiew Tan, and Gaurav Vijayvargiya. Db-
notes: a post-it system for relational databases based on provenance.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Baltimore, Maryland, USA, June 14-16, 2005,
pages 942-944, 2005.

Ezra Cooper. The script-writer’s dream: How to write great SQL in
your own language, and be sure it will succeed. In Philippa Gardner
and Floris Geerts, editors, Database Programming Languages, volume
5708 of Lecture Notes in Computer Science, pages 36-51. Springer
Berlin Heidelberg, 2009.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links:
Web programming without tiers. In Proceedings of the 5th Interna-
tional Conference on Formal Methods for Components and Objects,
FMCO’06, pages 266-296, Berlin, Heidelberg, 2007. Springer-Verlag.

Brian J. Corcoran, Nikhil Swamy, and Michael W. Hicks. Cross-tier,
label-based security enforcement for web applications. In Proceedings
of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July
2, 2009, pages 269-282, 20009.

George Giorgidze, Torsten Grust, Alexander Ulrich, and Jeroen Weijers.
Algebraic data types for language-integrated queries. In Proceedings of
the 2013 Workshop on Data Driven Functional Programming, DDFP
’13, pages 5-10, New York, NY, USA, 2013. ACM.

Boris Glavic and Gustavo Alonso. Perm: Processing Provenance and
Data on the same Data Model through Query Rewriting. In Proceedings
of the 25th IEEE International Conference on Data Engineering
(ICDE), pages 174-185, 2009.

Boris Glavic, Renée J. Miller, and Gustavo Alonso. Using SQL for
efficient generation and querying of provenance information. In search
of elegance in the theory and practice of computation: a Festschrift in
honour of Peter Buneman, pages 291-320, 2013.

Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying
data provenance. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis,
Indiana, USA, June 6-10, 2010, pages 951-962, 2010.

Sam Lindley and James Cheney. Row-based effect types for database
integration. In Proceedings of the 8th ACM SIGPLAN Workshop on
Types in Language Design and Implementation, TLDI *12, pages 91—
102, New York, NY, USA, 2012. ACM.

Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ: reconcil-
ing object, relations and XML in the .NET framework. In SIGMOD,
2006.

Nikhil Swamy, Michael W. Hicks, and Gavin M. Bierman. A theory of
typed coercions and its applications. In Proceeding of the 14th ACM
SIGPLAN international conference on Functional programming, ICFP
2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009, pages
329-340, 20009.

	Introduction
	Technical approach and preliminary results
	Design of PLinks
	Type system
	Translation

	Related work
	Future work
	Conclusions

