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Motivation
• Lots of work on how to record, store, 

query provenance within a single system

• database, WFMS, OS, ...

• Much less on how to program with that 
provenance

• especially in systems spanning multiple 
"layers"

• such as Web applications...



Scenario
• New, extra-nifty pWatch just released

• Would like to monitor  comments

• aggregated from across the Web into multiple tables

• Would like to know: 

• where did this comment come from?

• inspect provenance to group/aggregate comments 
by source?

• Or maybe: delete negative comments? :)



This paper
• Initial steps towards language-integrated 

provenance

• Goals: 

• Simplify programming with provenance in web applications

• Provide strong guarantees for "provenance safety"

• e.g. cannot forge or (accidentally) lose provenance

• Initial focus: where-provenance for DB queries

• Building on language-integrated query (LINQ)

• in context of the Links web/DB programming language



Basic Links program
var top comments = table ”top comments” with

(id: Int, text: String,
origin table: String, origin column: String, origin row: Int);

sig watch comment : ((text:String, origin table:String| )) -> Bool
fun watch comment(c) {
c.origin table == ”watch” || c.text =⇠ /.*pWatch.*/

}

sig render quote : (String) ⇠> Bool
fun render quote(c) {
<li>
<blockquote>{stringToXml(c)}</blockquote>

</li> }

sig quotes list : () ⇠> Xml
fun quotes list() {
var comments = query {
for (c <-- top comments)
where (watch comment(c.text))
[(text = c.text)]

}
<ul>{for (c <- comments) render quote(c.text)}</ul>

}

Figure 1. Render a list of quotes from the database.

created by the query. We propose to extend Links to explicitly
support provenance, and call the resulting language PLinks. In
PLinks we can implement delete buttons using where-provenance
as shown in Figure 2. The prov-part of PLinks’ table declaration
contains information on how to compute provenance for columns.
This is what we use as the text column’s provenance.

Having declared how to compute provenance, we can change the
type of watch comment to accept a value of type Prov String, which
indicates that we expect a string argument that carries provenance.
The keyword prov gives access to provenance. It returns a record
with three fields: relation, column, and row that correspond to the
three components of a where-provenance triple. As before, we
consider comments to be about a watch, if they originate from
a relation called watch (now accessed using (prov c).relation) or
the text itself (accessed via the keyword data) contains the word
pWatch. We add a new function named delete quote which uses the
text’s provenance to delete it from the original table.2 This function
is called when admins click the delete button that is emitted in
render quote.

We could write a program to do the same thing in plain Links. In
fact, in Section 3.2 we describe how to translate PLinks programs
into Links programs. However, language-integrated provenance has
some benefits over handling provenance manually or in the database:
Provenance is not data. Provenance is metadata. A provenance-
aware type system like the one we describe in Section 3.1 ensures
it is handled accordingly. Programmers who have a value with
provenance type can be certain that it carries provenance that
ties it back to its origin in a database. Provenance can never be
lost, invented, or arbitrarily manipulated on the way. Precise types
can restrict the operations on data to those that are meaningful in
the presence of where-provenance, thus eliminating the need for
placeholders for data of unknown provenance (or so-called “bottom”
values). Language-integrated query already gives uniform access to
data in the programming language and data from the database. We
extend that to natural access to provenance. Glavic et al. showed that
implementing provenance through rewriting queries in the database
is possible [12, 13]. If we rewrite programs before interaction with

2 We use table from name to get the actual table from its name.

var top comments = table ”top comments” with
(id: Int, text: String,
origin table: String, origin column: String, origin row: Int)
prov (text = fun (c) { (relation = c.origin table,

column = c.origin column,
row = c.origin row) });

sig watch comment : (Prov String) -> Bool
fun watch comment(c) {
(prov c).relation == ”watch” || data c =⇠ /.*pWatch.*/

}

sig delete quote : (Prov String) ⇠> ()
fun delete quote(c) server {
delete (r <-- table from name((prov c).relation)
where (r.id == (prov c).row) }

sig render quote : (Prov String) ⇠> Bool
fun render quote(c) {
<li>
<blockquote>{stringToXml(data c)}</blockquote>
<button l:onclick=”{delete quote(c)}”>delete</button>

</li> }

sig quotes list : () ⇠> Xml
fun quotes list() {
var comments = query {
for (c <-- top comments)
where (watch comment(c.text))
[(text = c.text)]

}
<ul>{for (c <- comments) render quote(c.text)}</ul>

}

Figure 2. Programming with provenance support.

the database system, we get provenance support for any unmodified
relational database management system for free.

This paper describes work in progress. In the next section, we
describe our technical strategy and summarize experience with a
preliminary implementation. Section 3 outlines our revised design
based on this experience. Section 4 describes related work, Section 5
details limitations and our future plans, and Section 6 concludes.

2. Technical approach and preliminary results

Query expressions in Links are based on the nested relational
calculus [5], a core query language that provides collection types
and comprehensions:

e ::= c | x | (e1, e2) | e.i | e1 + e2 | e1 = e2 | · · ·
| if e then e1 else e2
| ; | e1 [ e2 | {e} | for (x e) return e

0

⌧ ::= b 2 {int, bool, . . .} | t1 ⇥ t2 | {t}

Links queries use a similar syntax (extended with records) and uses
a normalization algorithm (explained by Cooper [8] and by Lindley
and Cheney [15]) to turn such query expressions into SQL, provided
the queries return flat records of values of base types. (Recent work
on query shredding [6] shows how to lift this restriction, but hasn’t
yet been incorporated into the main version of Links.) Buneman et
al. [3] proposed a translation that maps an ordinary nested relational
query to one that propagates where-provenance information on all
parts of the source data to the output. We present a simplified version
of this translation: given a query expression e, we define P (e) to
be a query that propagates annotations on data values of base types
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created by the query. We propose to extend Links to explicitly
support provenance, and call the resulting language PLinks. In
PLinks we can implement delete buttons using where-provenance
as shown in Figure 2. The prov-part of PLinks’ table declaration
contains information on how to compute provenance for columns.
This is what we use as the text column’s provenance.

Having declared how to compute provenance, we can change the
type of watch comment to accept a value of type Prov String, which
indicates that we expect a string argument that carries provenance.
The keyword prov gives access to provenance. It returns a record
with three fields: relation, column, and row that correspond to the
three components of a where-provenance triple. As before, we
consider comments to be about a watch, if they originate from
a relation called watch (now accessed using (prov c).relation) or
the text itself (accessed via the keyword data) contains the word
pWatch. We add a new function named delete quote which uses the
text’s provenance to delete it from the original table.2 This function
is called when admins click the delete button that is emitted in
render quote.

We could write a program to do the same thing in plain Links. In
fact, in Section 3.2 we describe how to translate PLinks programs
into Links programs. However, language-integrated provenance has
some benefits over handling provenance manually or in the database:
Provenance is not data. Provenance is metadata. A provenance-
aware type system like the one we describe in Section 3.1 ensures
it is handled accordingly. Programmers who have a value with
provenance type can be certain that it carries provenance that
ties it back to its origin in a database. Provenance can never be
lost, invented, or arbitrarily manipulated on the way. Precise types
can restrict the operations on data to those that are meaningful in
the presence of where-provenance, thus eliminating the need for
placeholders for data of unknown provenance (or so-called “bottom”
values). Language-integrated query already gives uniform access to
data in the programming language and data from the database. We
extend that to natural access to provenance. Glavic et al. showed that
implementing provenance through rewriting queries in the database
is possible [12, 13]. If we rewrite programs before interaction with

2 We use table from name to get the actual table from its name.

var top comments = table ”top comments” with
(id: Int, text: String,
origin table: String, origin column: String, origin row: Int)
prov (text = fun (c) { (relation = c.origin table,

column = c.origin column,
row = c.origin row) });

sig watch comment : (Prov String) -> Bool
fun watch comment(c) {
(prov c).relation == ”watch” || data c =⇠ /.*pWatch.*/

}

sig delete quote : (Prov String) ⇠> ()
fun delete quote(c) server {
delete (r <-- table from name((prov c).relation)
where (r.id == (prov c).row) }

sig render quote : (Prov String) ⇠> Bool
fun render quote(c) {
<li>
<blockquote>{stringToXml(data c)}</blockquote>
<button l:onclick=”{delete quote(c)}”>delete</button>

</li> }

sig quotes list : () ⇠> Xml
fun quotes list() {
var comments = query {
for (c <-- top comments)
where (watch comment(c.text))
[(text = c.text)]

}
<ul>{for (c <- comments) render quote(c.text)}</ul>

}

Figure 2. Programming with provenance support.

the database system, we get provenance support for any unmodified
relational database management system for free.

This paper describes work in progress. In the next section, we
describe our technical strategy and summarize experience with a
preliminary implementation. Section 3 outlines our revised design
based on this experience. Section 4 describes related work, Section 5
details limitations and our future plans, and Section 6 concludes.

2. Technical approach and preliminary results

Query expressions in Links are based on the nested relational
calculus [5], a core query language that provides collection types
and comprehensions:

e ::= c | x | (e1, e2) | e.i | e1 + e2 | e1 = e2 | · · ·
| if e then e1 else e2
| ; | e1 [ e2 | {e} | for (x e) return e

0

⌧ ::= b 2 {int, bool, . . .} | t1 ⇥ t2 | {t}

Links queries use a similar syntax (extended with records) and uses
a normalization algorithm (explained by Cooper [8] and by Lindley
and Cheney [15]) to turn such query expressions into SQL, provided
the queries return flat records of values of base types. (Recent work
on query shredding [6] shows how to lift this restriction, but hasn’t
yet been incorporated into the main version of Links.) Buneman et
al. [3] proposed a translation that maps an ordinary nested relational
query to one that propagates where-provenance information on all
parts of the source data to the output. We present a simplified version
of this translation: given a query expression e, we define P (e) to
be a query that propagates annotations on data values of base types

Aggregates source data from 
several tables; 

origin_* columns store view 
or update "provenance"
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support provenance, and call the resulting language PLinks. In
PLinks we can implement delete buttons using where-provenance
as shown in Figure 2. The prov-part of PLinks’ table declaration
contains information on how to compute provenance for columns.
This is what we use as the text column’s provenance.
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the database system, we get provenance support for any unmodified
relational database management system for free.

This paper describes work in progress. In the next section, we
describe our technical strategy and summarize experience with a
preliminary implementation. Section 3 outlines our revised design
based on this experience. Section 4 describes related work, Section 5
details limitations and our future plans, and Section 6 concludes.
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a normalization algorithm (explained by Cooper [8] and by Lindley
and Cheney [15]) to turn such query expressions into SQL, provided
the queries return flat records of values of base types. (Recent work
on query shredding [6] shows how to lift this restriction, but hasn’t
yet been incorporated into the main version of Links.) Buneman et
al. [3] proposed a translation that maps an ordinary nested relational
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the database system, we get provenance support for any unmodified
relational database management system for free.

This paper describes work in progress. In the next section, we
describe our technical strategy and summarize experience with a
preliminary implementation. Section 3 outlines our revised design
based on this experience. Section 4 describes related work, Section 5
details limitations and our future plans, and Section 6 concludes.

2. Technical approach and preliminary results

Query expressions in Links are based on the nested relational
calculus [5], a core query language that provides collection types
and comprehensions:

e ::= c | x | (e1, e2) | e.i | e1 + e2 | e1 = e2 | · · ·
| if e then e1 else e2
| ; | e1 [ e2 | {e} | for (x e) return e
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Links queries use a similar syntax (extended with records) and uses
a normalization algorithm (explained by Cooper [8] and by Lindley
and Cheney [15]) to turn such query expressions into SQL, provided
the queries return flat records of values of base types. (Recent work
on query shredding [6] shows how to lift this restriction, but hasn’t
yet been incorporated into the main version of Links.) Buneman et
al. [3] proposed a translation that maps an ordinary nested relational
query to one that propagates where-provenance information on all
parts of the source data to the output. We present a simplified version
of this translation: given a query expression e, we define P (e) to
be a query that propagates annotations on data values of base types
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the database system, we get provenance support for any unmodified
relational database management system for free.

This paper describes work in progress. In the next section, we
describe our technical strategy and summarize experience with a
preliminary implementation. Section 3 outlines our revised design
based on this experience. Section 4 describes related work, Section 5
details limitations and our future plans, and Section 6 concludes.

2. Technical approach and preliminary results

Query expressions in Links are based on the nested relational
calculus [5], a core query language that provides collection types
and comprehensions:
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Links queries use a similar syntax (extended with records) and uses
a normalization algorithm (explained by Cooper [8] and by Lindley
and Cheney [15]) to turn such query expressions into SQL, provided
the queries return flat records of values of base types. (Recent work
on query shredding [6] shows how to lift this restriction, but hasn’t
yet been incorporated into the main version of Links.) Buneman et
al. [3] proposed a translation that maps an ordinary nested relational
query to one that propagates where-provenance information on all
parts of the source data to the output. We present a simplified version
of this translation: given a query expression e, we define P (e) to
be a query that propagates annotations on data values of base types
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(integers, strings etc.) only, as follows:
P (x) = x

P (c) = (c,?)
P (e1 op e2) = (P (e1).1 op P (e2).1,?)

op 2 {+,=, . . .}
P (e.i) = P (e).i

P ((e1, e2)) = (P (e1), P (e2))
P (if e then e1 else e2) = if P (e).1 then P (e1) else P (e2)

P (;) = ;
P (e1 [ e2) = P (e1) [ P (e2)

P ({e}) = {P (e)}
P (for (x e) return e

0) = for (x P (e)) return P (e0)

The translation changes the types of the expressions as follows:

T (b) = b⇥tag T (⌧1⇥⌧2) = T (⌧1)⇥T (⌧2) T ({⌧}) = {T (⌧)}
where tag stands for the type of the provenance information, e.g.
triples of relation name, field name and row id. Given a query
expression e : ⌧ with free variables x1 : ⌧1, . . . , xn : ⌧n, its
translation e

0 = P (e) has type T (⌧) assuming the free variables’
types are adjusted to x1 : T (⌧1), . . . , xn : T (⌧n).

We have used this translation as the basis of an initial attempt to
extend Links with provenance support. We modified the Links query
normalizer to perform the above translation on queries. However,
this approach seems to have some limitations that make it difficult
to combine provenance-aware queries with Links programs. For
example, since the translation changes the types of both the inputs
(e.g. table references) and results, using the translated query requires
fixing some convention for naming the additional provenance fields
of the tables. These must be added somehow to the database,
which imposes a space and maintenance overhead; moreover, the
translation requires annotations on all source data, and propagates
these annotations through the query eagerly, even if the user never
requests them. Moreover, Buneman et al.’s approach relies on a
special “bottom” value ? to annotate parts of the result that were not
copied from the input but were instead created by the query. Finally,
Buneman et al.’s translation treats the provenance information as
pure metadata: it cannot be inspected by the query, nor can it be
manipulated or “forged”. However, once the provenance leaves the
query and is processed by the Links program, it becomes plain
data: the programmer can discard it, change it or fabricate it. Both
of these choices are questionable: it may be advantageous to be
able to inspect the provenance during a query, and it may also be
advantageous to be able to certify the integrity of the provenance
information (i.e. unforgeability) outside of the query.

These observations motivate a design that takes the eventual use
of the provenance information elsewhere in Links programs into
account, which will be the focus of the next section.

3. Design of PLinks
We describe PLinks, an extension of Links, that turns the program-
ming language into a provenance system in its own right. That is, not
only will it allow programmers to query provenance from an exter-
nal database with provenance support, but it will rewrite queries to
calculate their own provenance before they even reach the database.

This is work in progress and has not been implemented yet.
Figure 3 shows the compilation and execution model. We type
check PLinks programs using the type system extension described

in Section 3.1. We translate type correct programs to standard Links
using the source to source translation described in Section 3.2. From
there, Links uses its standard query normalization strategy described
by Cooper and by Lindley and Cheney [8, 15], to generate SQL
queries which can then be executed on any relational database.

The new language features of PLinks compared to Links are
as follows. PLinks adds a new type constructor Prov o, where o is
a base type, to represent values that carry where-provenance. To
access provenance, we add the keyword prov. Given a value of type
Prov o, it returns a record representing the value’s provenance. Such
a provenance record has three fields: relation, column, and row that
reflect the first, second, and third component of a where-provenance
triple, respectively. The related keyword data drops provenance,
returning just the data. We used most of these in the example in
Figure 2. Values of type Prov o can not be constructed directly by
the programmer. Instead, they are automatically generated by PLinks
(based on the prov clauses associated with table definitions). The
programmer only specifies how the provenance for a column is
derived. This is more flexible than in our initial attempt but possibly
not quite enough yet. See Section 5 for a discussion of limitations.

3.1 Type system

Links is a statically typed language. It has base types Int, Bool, and
String that correspond to their equivalents in databases. Records
have row types that describe the labels and types of the record’s
fields. Row polymorphism allows the same function to operate
on differently shaped records, as long as the necessary labels are
present. Effect types specify where function can be executed: on
the client, the server, or in database queries. The most important
aspect of Links’ type system, for our purposes, is the guarantee that
query blocks get translated to a single SQL query if they use only
database-executable functions and return a flat list of records with
fields of base type. Lindley and Cheney [15] describe Links’ type
system in detail.

PLinks extends Links’ type system to account for where-
provenance. Where-provenance is attached to a “cell” in a relation
and describes where the data was copied from. Provenance informa-
tion has meaning only in the context of the data it belongs to. The
type system should capture the special nature of provenance meta-
data. This allows programmers to rely on the accuracy of provenance
and prevents mistakes. There are four things in particular, that we
expect from a type system that properly deals with provenance: First,
provenance is attached to data and automatically propagated with
the data it belongs to. Second, provenance is immutable, thus the
type system should prevent accidental modification. Third, changes
to the data would invalidate where-provenance. Data in Links is
immutable, so this problem does not directly manifest, but it may
require caution when data in the database is updated. Fourth, it is
not possible for a programmer to forge provenance. Provenance is
always and only automatically derived from the database by PLinks.

Our type system design realizes these goals as follows. The type
constructor Prov indicates data paired up with its provenance. Values
of type Prov o, where o is a base type, carry provenance metadata.
The restriction of the type argument o to base types reflects that
where-provenance is attached to “cells”, not whole database rows.
This does not apply to some other forms of provenance (e.g. why-
provenance [4] based on row annotations), so we will need to revisit
this in future work.

Figure 4 shows simplified versions of the additional type rules we
need for PLinks, compared to Lindley and Cheney’s description of
Links’ type system [15]. The PROV rule allows us to read a value’s
provenance using the prov keyword. If M is an expression with
type Prov o we can read its provenance. Provenance is returned as
a record (abbreviated PR) with fields relation, column, and row. For
the time being we represent relation and column by their names and
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(integers, strings etc.) only, as follows:
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P (c) = (c,?)
P (e1 op e2) = (P (e1).1 op P (e2).1,?)
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The translation changes the types of the expressions as follows:

T (b) = b⇥tag T (⌧1⇥⌧2) = T (⌧1)⇥T (⌧2) T ({⌧}) = {T (⌧)}
where tag stands for the type of the provenance information, e.g.
triples of relation name, field name and row id. Given a query
expression e : ⌧ with free variables x1 : ⌧1, . . . , xn : ⌧n, its
translation e

0 = P (e) has type T (⌧) assuming the free variables’
types are adjusted to x1 : T (⌧1), . . . , xn : T (⌧n).

We have used this translation as the basis of an initial attempt to
extend Links with provenance support. We modified the Links query
normalizer to perform the above translation on queries. However,
this approach seems to have some limitations that make it difficult
to combine provenance-aware queries with Links programs. For
example, since the translation changes the types of both the inputs
(e.g. table references) and results, using the translated query requires
fixing some convention for naming the additional provenance fields
of the tables. These must be added somehow to the database,
which imposes a space and maintenance overhead; moreover, the
translation requires annotations on all source data, and propagates
these annotations through the query eagerly, even if the user never
requests them. Moreover, Buneman et al.’s approach relies on a
special “bottom” value ? to annotate parts of the result that were not
copied from the input but were instead created by the query. Finally,
Buneman et al.’s translation treats the provenance information as
pure metadata: it cannot be inspected by the query, nor can it be
manipulated or “forged”. However, once the provenance leaves the
query and is processed by the Links program, it becomes plain
data: the programmer can discard it, change it or fabricate it. Both
of these choices are questionable: it may be advantageous to be
able to inspect the provenance during a query, and it may also be
advantageous to be able to certify the integrity of the provenance
information (i.e. unforgeability) outside of the query.

These observations motivate a design that takes the eventual use
of the provenance information elsewhere in Links programs into
account, which will be the focus of the next section.

3. Design of PLinks
We describe PLinks, an extension of Links, that turns the program-
ming language into a provenance system in its own right. That is, not
only will it allow programmers to query provenance from an exter-
nal database with provenance support, but it will rewrite queries to
calculate their own provenance before they even reach the database.

This is work in progress and has not been implemented yet.
Figure 3 shows the compilation and execution model. We type
check PLinks programs using the type system extension described

in Section 3.1. We translate type correct programs to standard Links
using the source to source translation described in Section 3.2. From
there, Links uses its standard query normalization strategy described
by Cooper and by Lindley and Cheney [8, 15], to generate SQL
queries which can then be executed on any relational database.

The new language features of PLinks compared to Links are
as follows. PLinks adds a new type constructor Prov o, where o is
a base type, to represent values that carry where-provenance. To
access provenance, we add the keyword prov. Given a value of type
Prov o, it returns a record representing the value’s provenance. Such
a provenance record has three fields: relation, column, and row that
reflect the first, second, and third component of a where-provenance
triple, respectively. The related keyword data drops provenance,
returning just the data. We used most of these in the example in
Figure 2. Values of type Prov o can not be constructed directly by
the programmer. Instead, they are automatically generated by PLinks
(based on the prov clauses associated with table definitions). The
programmer only specifies how the provenance for a column is
derived. This is more flexible than in our initial attempt but possibly
not quite enough yet. See Section 5 for a discussion of limitations.

3.1 Type system

Links is a statically typed language. It has base types Int, Bool, and
String that correspond to their equivalents in databases. Records
have row types that describe the labels and types of the record’s
fields. Row polymorphism allows the same function to operate
on differently shaped records, as long as the necessary labels are
present. Effect types specify where function can be executed: on
the client, the server, or in database queries. The most important
aspect of Links’ type system, for our purposes, is the guarantee that
query blocks get translated to a single SQL query if they use only
database-executable functions and return a flat list of records with
fields of base type. Lindley and Cheney [15] describe Links’ type
system in detail.

PLinks extends Links’ type system to account for where-
provenance. Where-provenance is attached to a “cell” in a relation
and describes where the data was copied from. Provenance informa-
tion has meaning only in the context of the data it belongs to. The
type system should capture the special nature of provenance meta-
data. This allows programmers to rely on the accuracy of provenance
and prevents mistakes. There are four things in particular, that we
expect from a type system that properly deals with provenance: First,
provenance is attached to data and automatically propagated with
the data it belongs to. Second, provenance is immutable, thus the
type system should prevent accidental modification. Third, changes
to the data would invalidate where-provenance. Data in Links is
immutable, so this problem does not directly manifest, but it may
require caution when data in the database is updated. Fourth, it is
not possible for a programmer to forge provenance. Provenance is
always and only automatically derived from the database by PLinks.

Our type system design realizes these goals as follows. The type
constructor Prov indicates data paired up with its provenance. Values
of type Prov o, where o is a base type, carry provenance metadata.
The restriction of the type argument o to base types reflects that
where-provenance is attached to “cells”, not whole database rows.
This does not apply to some other forms of provenance (e.g. why-
provenance [4] based on row annotations), so we will need to revisit
this in future work.

Figure 4 shows simplified versions of the additional type rules we
need for PLinks, compared to Lindley and Cheney’s description of
Links’ type system [15]. The PROV rule allows us to read a value’s
provenance using the prov keyword. If M is an expression with
type Prov o we can read its provenance. Provenance is returned as
a record (abbreviated PR) with fields relation, column, and row. For
the time being we represent relation and column by their names and
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var top comments = table ”top comments” with
(id: Int, text: String,
origin table: String, origin column: String, origin row: Int);

sig watch comment : ((text:String, origin table:String| )) -> Bool
fun watch comment(c) {
c.origin table == ”watch” || c.text =⇠ /.*pWatch.*/

}

sig render quote : (String) ⇠> Bool
fun render quote(c) {
<li>
<blockquote>{stringToXml(c)}</blockquote>

</li> }

sig quotes list : () ⇠> Xml
fun quotes list() {
var comments = query {
for (c <-- top comments)
where (watch comment(c.text))
[(text = c.text)]

}
<ul>{for (c <- comments) render quote(c.text)}</ul>

}

Figure 1. Render a list of quotes from the database.

created by the query. We propose to extend Links to explicitly
support provenance, and call the resulting language PLinks. In
PLinks we can implement delete buttons using where-provenance
as shown in Figure 2. The prov-part of PLinks’ table declaration
contains information on how to compute provenance for columns.
This is what we use as the text column’s provenance.

Having declared how to compute provenance, we can change the
type of watch comment to accept a value of type Prov String, which
indicates that we expect a string argument that carries provenance.
The keyword prov gives access to provenance. It returns a record
with three fields: relation, column, and row that correspond to the
three components of a where-provenance triple. As before, we
consider comments to be about a watch, if they originate from
a relation called watch (now accessed using (prov c).relation) or
the text itself (accessed via the keyword data) contains the word
pWatch. We add a new function named delete quote which uses the
text’s provenance to delete it from the original table.2 This function
is called when admins click the delete button that is emitted in
render quote.

We could write a program to do the same thing in plain Links. In
fact, in Section 3.2 we describe how to translate PLinks programs
into Links programs. However, language-integrated provenance has
some benefits over handling provenance manually or in the database:
Provenance is not data. Provenance is metadata. A provenance-
aware type system like the one we describe in Section 3.1 ensures
it is handled accordingly. Programmers who have a value with
provenance type can be certain that it carries provenance that
ties it back to its origin in a database. Provenance can never be
lost, invented, or arbitrarily manipulated on the way. Precise types
can restrict the operations on data to those that are meaningful in
the presence of where-provenance, thus eliminating the need for
placeholders for data of unknown provenance (or so-called “bottom”
values). Language-integrated query already gives uniform access to
data in the programming language and data from the database. We
extend that to natural access to provenance. Glavic et al. showed that
implementing provenance through rewriting queries in the database
is possible [12, 13]. If we rewrite programs before interaction with

2 We use table from name to get the actual table from its name.

var top comments = table ”top comments” with
(id: Int, text: String,
origin table: String, origin column: String, origin row: Int)
prov (text = fun (c) { (relation = c.origin table,

column = c.origin column,
row = c.origin row) });

sig watch comment : (Prov String) -> Bool
fun watch comment(c) {
(prov c).relation == ”watch” || data c =⇠ /.*pWatch.*/

}

sig delete quote : (Prov String) ⇠> ()
fun delete quote(c) server {
delete (r <-- table from name((prov c).relation)
where (r.id == (prov c).row) }

sig render quote : (Prov String) ⇠> Bool
fun render quote(c) {
<li>
<blockquote>{stringToXml(data c)}</blockquote>
<button l:onclick=”{delete quote(c)}”>delete</button>

</li> }

sig quotes list : () ⇠> Xml
fun quotes list() {
var comments = query {
for (c <-- top comments)
where (watch comment(c.text))
[(text = c.text)]

}
<ul>{for (c <- comments) render quote(c.text)}</ul>

}

Figure 2. Programming with provenance support.

the database system, we get provenance support for any unmodified
relational database management system for free.

This paper describes work in progress. In the next section, we
describe our technical strategy and summarize experience with a
preliminary implementation. Section 3 outlines our revised design
based on this experience. Section 4 describes related work, Section 5
details limitations and our future plans, and Section 6 concludes.

2. Technical approach and preliminary results

Query expressions in Links are based on the nested relational
calculus [5], a core query language that provides collection types
and comprehensions:

e ::= c | x | (e1, e2) | e.i | e1 + e2 | e1 = e2 | · · ·
| if e then e1 else e2
| ; | e1 [ e2 | {e} | for (x e) return e

0

⌧ ::= b 2 {int, bool, . . .} | t1 ⇥ t2 | {t}

Links queries use a similar syntax (extended with records) and uses
a normalization algorithm (explained by Cooper [8] and by Lindley
and Cheney [15]) to turn such query expressions into SQL, provided
the queries return flat records of values of base types. (Recent work
on query shredding [6] shows how to lift this restriction, but hasn’t
yet been incorporated into the main version of Links.) Buneman et
al. [3] proposed a translation that maps an ordinary nested relational
query to one that propagates where-provenance information on all
parts of the source data to the output. We present a simplified version
of this translation: given a query expression e, we define P (e) to
be a query that propagates annotations on data values of base types
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(integers, strings etc.) only, as follows:
P (x) = x

P (c) = (c,?)
P (e1 op e2) = (P (e1).1 op P (e2).1,?)

op 2 {+,=, . . .}
P (e.i) = P (e).i

P ((e1, e2)) = (P (e1), P (e2))
P (if e then e1 else e2) = if P (e).1 then P (e1) else P (e2)

P (;) = ;
P (e1 [ e2) = P (e1) [ P (e2)

P ({e}) = {P (e)}
P (for (x e) return e

0) = for (x P (e)) return P (e0)

The translation changes the types of the expressions as follows:

T (b) = b⇥tag T (⌧1⇥⌧2) = T (⌧1)⇥T (⌧2) T ({⌧}) = {T (⌧)}
where tag stands for the type of the provenance information, e.g.
triples of relation name, field name and row id. Given a query
expression e : ⌧ with free variables x1 : ⌧1, . . . , xn : ⌧n, its
translation e

0 = P (e) has type T (⌧) assuming the free variables’
types are adjusted to x1 : T (⌧1), . . . , xn : T (⌧n).

We have used this translation as the basis of an initial attempt to
extend Links with provenance support. We modified the Links query
normalizer to perform the above translation on queries. However,
this approach seems to have some limitations that make it difficult
to combine provenance-aware queries with Links programs. For
example, since the translation changes the types of both the inputs
(e.g. table references) and results, using the translated query requires
fixing some convention for naming the additional provenance fields
of the tables. These must be added somehow to the database,
which imposes a space and maintenance overhead; moreover, the
translation requires annotations on all source data, and propagates
these annotations through the query eagerly, even if the user never
requests them. Moreover, Buneman et al.’s approach relies on a
special “bottom” value ? to annotate parts of the result that were not
copied from the input but were instead created by the query. Finally,
Buneman et al.’s translation treats the provenance information as
pure metadata: it cannot be inspected by the query, nor can it be
manipulated or “forged”. However, once the provenance leaves the
query and is processed by the Links program, it becomes plain
data: the programmer can discard it, change it or fabricate it. Both
of these choices are questionable: it may be advantageous to be
able to inspect the provenance during a query, and it may also be
advantageous to be able to certify the integrity of the provenance
information (i.e. unforgeability) outside of the query.

These observations motivate a design that takes the eventual use
of the provenance information elsewhere in Links programs into
account, which will be the focus of the next section.

3. Design of PLinks
We describe PLinks, an extension of Links, that turns the program-
ming language into a provenance system in its own right. That is, not
only will it allow programmers to query provenance from an exter-
nal database with provenance support, but it will rewrite queries to
calculate their own provenance before they even reach the database.

This is work in progress and has not been implemented yet.
Figure 3 shows the compilation and execution model. We type
check PLinks programs using the type system extension described

in Section 3.1. We translate type correct programs to standard Links
using the source to source translation described in Section 3.2. From
there, Links uses its standard query normalization strategy described
by Cooper and by Lindley and Cheney [8, 15], to generate SQL
queries which can then be executed on any relational database.

The new language features of PLinks compared to Links are
as follows. PLinks adds a new type constructor Prov o, where o is
a base type, to represent values that carry where-provenance. To
access provenance, we add the keyword prov. Given a value of type
Prov o, it returns a record representing the value’s provenance. Such
a provenance record has three fields: relation, column, and row that
reflect the first, second, and third component of a where-provenance
triple, respectively. The related keyword data drops provenance,
returning just the data. We used most of these in the example in
Figure 2. Values of type Prov o can not be constructed directly by
the programmer. Instead, they are automatically generated by PLinks
(based on the prov clauses associated with table definitions). The
programmer only specifies how the provenance for a column is
derived. This is more flexible than in our initial attempt but possibly
not quite enough yet. See Section 5 for a discussion of limitations.

3.1 Type system

Links is a statically typed language. It has base types Int, Bool, and
String that correspond to their equivalents in databases. Records
have row types that describe the labels and types of the record’s
fields. Row polymorphism allows the same function to operate
on differently shaped records, as long as the necessary labels are
present. Effect types specify where function can be executed: on
the client, the server, or in database queries. The most important
aspect of Links’ type system, for our purposes, is the guarantee that
query blocks get translated to a single SQL query if they use only
database-executable functions and return a flat list of records with
fields of base type. Lindley and Cheney [15] describe Links’ type
system in detail.

PLinks extends Links’ type system to account for where-
provenance. Where-provenance is attached to a “cell” in a relation
and describes where the data was copied from. Provenance informa-
tion has meaning only in the context of the data it belongs to. The
type system should capture the special nature of provenance meta-
data. This allows programmers to rely on the accuracy of provenance
and prevents mistakes. There are four things in particular, that we
expect from a type system that properly deals with provenance: First,
provenance is attached to data and automatically propagated with
the data it belongs to. Second, provenance is immutable, thus the
type system should prevent accidental modification. Third, changes
to the data would invalidate where-provenance. Data in Links is
immutable, so this problem does not directly manifest, but it may
require caution when data in the database is updated. Fourth, it is
not possible for a programmer to forge provenance. Provenance is
always and only automatically derived from the database by PLinks.

Our type system design realizes these goals as follows. The type
constructor Prov indicates data paired up with its provenance. Values
of type Prov o, where o is a base type, carry provenance metadata.
The restriction of the type argument o to base types reflects that
where-provenance is attached to “cells”, not whole database rows.
This does not apply to some other forms of provenance (e.g. why-
provenance [4] based on row annotations), so we will need to revisit
this in future work.

Figure 4 shows simplified versions of the additional type rules we
need for PLinks, compared to Lindley and Cheney’s description of
Links’ type system [15]. The PROV rule allows us to read a value’s
provenance using the prov keyword. If M is an expression with
type Prov o we can read its provenance. Provenance is returned as
a record (abbreviated PR) with fields relation, column, and row. For
the time being we represent relation and column by their names and
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The translation changes the types of the expressions as follows:

T (b) = b⇥tag T (⌧1⇥⌧2) = T (⌧1)⇥T (⌧2) T ({⌧}) = {T (⌧)}
where tag stands for the type of the provenance information, e.g.
triples of relation name, field name and row id. Given a query
expression e : ⌧ with free variables x1 : ⌧1, . . . , xn : ⌧n, its
translation e

0 = P (e) has type T (⌧) assuming the free variables’
types are adjusted to x1 : T (⌧1), . . . , xn : T (⌧n).

We have used this translation as the basis of an initial attempt to
extend Links with provenance support. We modified the Links query
normalizer to perform the above translation on queries. However,
this approach seems to have some limitations that make it difficult
to combine provenance-aware queries with Links programs. For
example, since the translation changes the types of both the inputs
(e.g. table references) and results, using the translated query requires
fixing some convention for naming the additional provenance fields
of the tables. These must be added somehow to the database,
which imposes a space and maintenance overhead; moreover, the
translation requires annotations on all source data, and propagates
these annotations through the query eagerly, even if the user never
requests them. Moreover, Buneman et al.’s approach relies on a
special “bottom” value ? to annotate parts of the result that were not
copied from the input but were instead created by the query. Finally,
Buneman et al.’s translation treats the provenance information as
pure metadata: it cannot be inspected by the query, nor can it be
manipulated or “forged”. However, once the provenance leaves the
query and is processed by the Links program, it becomes plain
data: the programmer can discard it, change it or fabricate it. Both
of these choices are questionable: it may be advantageous to be
able to inspect the provenance during a query, and it may also be
advantageous to be able to certify the integrity of the provenance
information (i.e. unforgeability) outside of the query.

These observations motivate a design that takes the eventual use
of the provenance information elsewhere in Links programs into
account, which will be the focus of the next section.

3. Design of PLinks
We describe PLinks, an extension of Links, that turns the program-
ming language into a provenance system in its own right. That is, not
only will it allow programmers to query provenance from an exter-
nal database with provenance support, but it will rewrite queries to
calculate their own provenance before they even reach the database.

This is work in progress and has not been implemented yet.
Figure 3 shows the compilation and execution model. We type
check PLinks programs using the type system extension described

in Section 3.1. We translate type correct programs to standard Links
using the source to source translation described in Section 3.2. From
there, Links uses its standard query normalization strategy described
by Cooper and by Lindley and Cheney [8, 15], to generate SQL
queries which can then be executed on any relational database.

The new language features of PLinks compared to Links are
as follows. PLinks adds a new type constructor Prov o, where o is
a base type, to represent values that carry where-provenance. To
access provenance, we add the keyword prov. Given a value of type
Prov o, it returns a record representing the value’s provenance. Such
a provenance record has three fields: relation, column, and row that
reflect the first, second, and third component of a where-provenance
triple, respectively. The related keyword data drops provenance,
returning just the data. We used most of these in the example in
Figure 2. Values of type Prov o can not be constructed directly by
the programmer. Instead, they are automatically generated by PLinks
(based on the prov clauses associated with table definitions). The
programmer only specifies how the provenance for a column is
derived. This is more flexible than in our initial attempt but possibly
not quite enough yet. See Section 5 for a discussion of limitations.

3.1 Type system

Links is a statically typed language. It has base types Int, Bool, and
String that correspond to their equivalents in databases. Records
have row types that describe the labels and types of the record’s
fields. Row polymorphism allows the same function to operate
on differently shaped records, as long as the necessary labels are
present. Effect types specify where function can be executed: on
the client, the server, or in database queries. The most important
aspect of Links’ type system, for our purposes, is the guarantee that
query blocks get translated to a single SQL query if they use only
database-executable functions and return a flat list of records with
fields of base type. Lindley and Cheney [15] describe Links’ type
system in detail.

PLinks extends Links’ type system to account for where-
provenance. Where-provenance is attached to a “cell” in a relation
and describes where the data was copied from. Provenance informa-
tion has meaning only in the context of the data it belongs to. The
type system should capture the special nature of provenance meta-
data. This allows programmers to rely on the accuracy of provenance
and prevents mistakes. There are four things in particular, that we
expect from a type system that properly deals with provenance: First,
provenance is attached to data and automatically propagated with
the data it belongs to. Second, provenance is immutable, thus the
type system should prevent accidental modification. Third, changes
to the data would invalidate where-provenance. Data in Links is
immutable, so this problem does not directly manifest, but it may
require caution when data in the database is updated. Fourth, it is
not possible for a programmer to forge provenance. Provenance is
always and only automatically derived from the database by PLinks.

Our type system design realizes these goals as follows. The type
constructor Prov indicates data paired up with its provenance. Values
of type Prov o, where o is a base type, carry provenance metadata.
The restriction of the type argument o to base types reflects that
where-provenance is attached to “cells”, not whole database rows.
This does not apply to some other forms of provenance (e.g. why-
provenance [4] based on row annotations), so we will need to revisit
this in future work.

Figure 4 shows simplified versions of the additional type rules we
need for PLinks, compared to Lindley and Cheney’s description of
Links’ type system [15]. The PROV rule allows us to read a value’s
provenance using the prov keyword. If M is an expression with
type Prov o we can read its provenance. Provenance is returned as
a record (abbreviated PR) with fields relation, column, and row. For
the time being we represent relation and column by their names and

Key property: P(e) is flat if e is 
(hence compiles to a single SQL query!)
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PLinks
var top comments = table ”top comments” with

(id: Int, text: String,
origin table: String, origin column: String, origin row: Int);

sig watch comment : ((text:String, origin table:String| )) -> Bool
fun watch comment(c) {
c.origin table == ”watch” || c.text =⇠ /.*pWatch.*/

}

sig render quote : (String) ⇠> Bool
fun render quote(c) {
<li>
<blockquote>{stringToXml(c)}</blockquote>

</li> }

sig quotes list : () ⇠> Xml
fun quotes list() {
var comments = query {
for (c <-- top comments)
where (watch comment(c.text))
[(text = c.text)]

}
<ul>{for (c <- comments) render quote(c.text)}</ul>

}

Figure 1. Render a list of quotes from the database.

created by the query. We propose to extend Links to explicitly
support provenance, and call the resulting language PLinks. In
PLinks we can implement delete buttons using where-provenance
as shown in Figure 2. The prov-part of PLinks’ table declaration
contains information on how to compute provenance for columns.
This is what we use as the text column’s provenance.

Having declared how to compute provenance, we can change the
type of watch comment to accept a value of type Prov String, which
indicates that we expect a string argument that carries provenance.
The keyword prov gives access to provenance. It returns a record
with three fields: relation, column, and row that correspond to the
three components of a where-provenance triple. As before, we
consider comments to be about a watch, if they originate from
a relation called watch (now accessed using (prov c).relation) or
the text itself (accessed via the keyword data) contains the word
pWatch. We add a new function named delete quote which uses the
text’s provenance to delete it from the original table.2 This function
is called when admins click the delete button that is emitted in
render quote.

We could write a program to do the same thing in plain Links. In
fact, in Section 3.2 we describe how to translate PLinks programs
into Links programs. However, language-integrated provenance has
some benefits over handling provenance manually or in the database:
Provenance is not data. Provenance is metadata. A provenance-
aware type system like the one we describe in Section 3.1 ensures
it is handled accordingly. Programmers who have a value with
provenance type can be certain that it carries provenance that
ties it back to its origin in a database. Provenance can never be
lost, invented, or arbitrarily manipulated on the way. Precise types
can restrict the operations on data to those that are meaningful in
the presence of where-provenance, thus eliminating the need for
placeholders for data of unknown provenance (or so-called “bottom”
values). Language-integrated query already gives uniform access to
data in the programming language and data from the database. We
extend that to natural access to provenance. Glavic et al. showed that
implementing provenance through rewriting queries in the database
is possible [12, 13]. If we rewrite programs before interaction with

2 We use table from name to get the actual table from its name.

var top comments = table ”top comments” with
(id: Int, text: String,
origin table: String, origin column: String, origin row: Int)
prov (text = fun (c) { (relation = c.origin table,

column = c.origin column,
row = c.origin row) });

sig watch comment : (Prov String) -> Bool
fun watch comment(c) {
(prov c).relation == ”watch” || data c =⇠ /.*pWatch.*/

}

sig delete quote : (Prov String) ⇠> ()
fun delete quote(c) server {
delete (r <-- table from name((prov c).relation)
where (r.id == (prov c).row) }

sig render quote : (Prov String) ⇠> Bool
fun render quote(c) {
<li>
<blockquote>{stringToXml(data c)}</blockquote>
<button l:onclick=”{delete quote(c)}”>delete</button>

</li> }

sig quotes list : () ⇠> Xml
fun quotes list() {
var comments = query {
for (c <-- top comments)
where (watch comment(c.text))
[(text = c.text)]

}
<ul>{for (c <- comments) render quote(c.text)}</ul>

}

Figure 2. Programming with provenance support.

the database system, we get provenance support for any unmodified
relational database management system for free.

This paper describes work in progress. In the next section, we
describe our technical strategy and summarize experience with a
preliminary implementation. Section 3 outlines our revised design
based on this experience. Section 4 describes related work, Section 5
details limitations and our future plans, and Section 6 concludes.

2. Technical approach and preliminary results

Query expressions in Links are based on the nested relational
calculus [5], a core query language that provides collection types
and comprehensions:

e ::= c | x | (e1, e2) | e.i | e1 + e2 | e1 = e2 | · · ·
| if e then e1 else e2
| ; | e1 [ e2 | {e} | for (x e) return e

0

⌧ ::= b 2 {int, bool, . . .} | t1 ⇥ t2 | {t}

Links queries use a similar syntax (extended with records) and uses
a normalization algorithm (explained by Cooper [8] and by Lindley
and Cheney [15]) to turn such query expressions into SQL, provided
the queries return flat records of values of base types. (Recent work
on query shredding [6] shows how to lift this restriction, but hasn’t
yet been incorporated into the main version of Links.) Buneman et
al. [3] proposed a translation that maps an ordinary nested relational
query to one that propagates where-provenance information on all
parts of the source data to the output. We present a simplified version
of this translation: given a query expression e, we define P (e) to
be a query that propagates annotations on data values of base types
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created by the query. We propose to extend Links to explicitly
support provenance, and call the resulting language PLinks. In
PLinks we can implement delete buttons using where-provenance
as shown in Figure 2. The prov-part of PLinks’ table declaration
contains information on how to compute provenance for columns.
This is what we use as the text column’s provenance.

Having declared how to compute provenance, we can change the
type of watch comment to accept a value of type Prov String, which
indicates that we expect a string argument that carries provenance.
The keyword prov gives access to provenance. It returns a record
with three fields: relation, column, and row that correspond to the
three components of a where-provenance triple. As before, we
consider comments to be about a watch, if they originate from
a relation called watch (now accessed using (prov c).relation) or
the text itself (accessed via the keyword data) contains the word
pWatch. We add a new function named delete quote which uses the
text’s provenance to delete it from the original table.2 This function
is called when admins click the delete button that is emitted in
render quote.

We could write a program to do the same thing in plain Links. In
fact, in Section 3.2 we describe how to translate PLinks programs
into Links programs. However, language-integrated provenance has
some benefits over handling provenance manually or in the database:
Provenance is not data. Provenance is metadata. A provenance-
aware type system like the one we describe in Section 3.1 ensures
it is handled accordingly. Programmers who have a value with
provenance type can be certain that it carries provenance that
ties it back to its origin in a database. Provenance can never be
lost, invented, or arbitrarily manipulated on the way. Precise types
can restrict the operations on data to those that are meaningful in
the presence of where-provenance, thus eliminating the need for
placeholders for data of unknown provenance (or so-called “bottom”
values). Language-integrated query already gives uniform access to
data in the programming language and data from the database. We
extend that to natural access to provenance. Glavic et al. showed that
implementing provenance through rewriting queries in the database
is possible [12, 13]. If we rewrite programs before interaction with

2 We use table from name to get the actual table from its name.

var top comments = table ”top comments” with
(id: Int, text: String,
origin table: String, origin column: String, origin row: Int)
prov (text = fun (c) { (relation = c.origin table,

column = c.origin column,
row = c.origin row) });

sig watch comment : (Prov String) -> Bool
fun watch comment(c) {
(prov c).relation == ”watch” || data c =⇠ /.*pWatch.*/

}

sig delete quote : (Prov String) ⇠> ()
fun delete quote(c) server {
delete (r <-- table from name((prov c).relation)
where (r.id == (prov c).row) }

sig render quote : (Prov String) ⇠> Bool
fun render quote(c) {
<li>
<blockquote>{stringToXml(data c)}</blockquote>
<button l:onclick=”{delete quote(c)}”>delete</button>

</li> }

sig quotes list : () ⇠> Xml
fun quotes list() {
var comments = query {
for (c <-- top comments)
where (watch comment(c.text))
[(text = c.text)]

}
<ul>{for (c <- comments) render quote(c.text)}</ul>

}

Figure 2. Programming with provenance support.

the database system, we get provenance support for any unmodified
relational database management system for free.

This paper describes work in progress. In the next section, we
describe our technical strategy and summarize experience with a
preliminary implementation. Section 3 outlines our revised design
based on this experience. Section 4 describes related work, Section 5
details limitations and our future plans, and Section 6 concludes.

2. Technical approach and preliminary results

Query expressions in Links are based on the nested relational
calculus [5], a core query language that provides collection types
and comprehensions:

e ::= c | x | (e1, e2) | e.i | e1 + e2 | e1 = e2 | · · ·
| if e then e1 else e2
| ; | e1 [ e2 | {e} | for (x e) return e

0

⌧ ::= b 2 {int, bool, . . .} | t1 ⇥ t2 | {t}

Links queries use a similar syntax (extended with records) and uses
a normalization algorithm (explained by Cooper [8] and by Lindley
and Cheney [15]) to turn such query expressions into SQL, provided
the queries return flat records of values of base types. (Recent work
on query shredding [6] shows how to lift this restriction, but hasn’t
yet been incorporated into the main version of Links.) Buneman et
al. [3] proposed a translation that maps an ordinary nested relational
query to one that propagates where-provenance information on all
parts of the source data to the output. We present a simplified version
of this translation: given a query expression e, we define P (e) to
be a query that propagates annotations on data values of base types
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created by the query. We propose to extend Links to explicitly
support provenance, and call the resulting language PLinks. In
PLinks we can implement delete buttons using where-provenance
as shown in Figure 2. The prov-part of PLinks’ table declaration
contains information on how to compute provenance for columns.
This is what we use as the text column’s provenance.

Having declared how to compute provenance, we can change the
type of watch comment to accept a value of type Prov String, which
indicates that we expect a string argument that carries provenance.
The keyword prov gives access to provenance. It returns a record
with three fields: relation, column, and row that correspond to the
three components of a where-provenance triple. As before, we
consider comments to be about a watch, if they originate from
a relation called watch (now accessed using (prov c).relation) or
the text itself (accessed via the keyword data) contains the word
pWatch. We add a new function named delete quote which uses the
text’s provenance to delete it from the original table.2 This function
is called when admins click the delete button that is emitted in
render quote.

We could write a program to do the same thing in plain Links. In
fact, in Section 3.2 we describe how to translate PLinks programs
into Links programs. However, language-integrated provenance has
some benefits over handling provenance manually or in the database:
Provenance is not data. Provenance is metadata. A provenance-
aware type system like the one we describe in Section 3.1 ensures
it is handled accordingly. Programmers who have a value with
provenance type can be certain that it carries provenance that
ties it back to its origin in a database. Provenance can never be
lost, invented, or arbitrarily manipulated on the way. Precise types
can restrict the operations on data to those that are meaningful in
the presence of where-provenance, thus eliminating the need for
placeholders for data of unknown provenance (or so-called “bottom”
values). Language-integrated query already gives uniform access to
data in the programming language and data from the database. We
extend that to natural access to provenance. Glavic et al. showed that
implementing provenance through rewriting queries in the database
is possible [12, 13]. If we rewrite programs before interaction with

2 We use table from name to get the actual table from its name.
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prov (text = fun (c) { (relation = c.origin table,
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sig watch comment : (Prov String) -> Bool
fun watch comment(c) {
(prov c).relation == ”watch” || data c =⇠ /.*pWatch.*/

}

sig delete quote : (Prov String) ⇠> ()
fun delete quote(c) server {
delete (r <-- table from name((prov c).relation)
where (r.id == (prov c).row) }

sig render quote : (Prov String) ⇠> Bool
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<li>
<blockquote>{stringToXml(data c)}</blockquote>
<button l:onclick=”{delete quote(c)}”>delete</button>

</li> }

sig quotes list : () ⇠> Xml
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the database system, we get provenance support for any unmodified
relational database management system for free.

This paper describes work in progress. In the next section, we
describe our technical strategy and summarize experience with a
preliminary implementation. Section 3 outlines our revised design
based on this experience. Section 4 describes related work, Section 5
details limitations and our future plans, and Section 6 concludes.

2. Technical approach and preliminary results

Query expressions in Links are based on the nested relational
calculus [5], a core query language that provides collection types
and comprehensions:

e ::= c | x | (e1, e2) | e.i | e1 + e2 | e1 = e2 | · · ·
| if e then e1 else e2
| ; | e1 [ e2 | {e} | for (x e) return e
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⌧ ::= b 2 {int, bool, . . .} | t1 ⇥ t2 | {t}

Links queries use a similar syntax (extended with records) and uses
a normalization algorithm (explained by Cooper [8] and by Lindley
and Cheney [15]) to turn such query expressions into SQL, provided
the queries return flat records of values of base types. (Recent work
on query shredding [6] shows how to lift this restriction, but hasn’t
yet been incorporated into the main version of Links.) Buneman et
al. [3] proposed a translation that maps an ordinary nested relational
query to one that propagates where-provenance information on all
parts of the source data to the output. We present a simplified version
of this translation: given a query expression e, we define P (e) to
be a query that propagates annotations on data values of base types
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Figure 4. Additional typing rules compared to Links [15].

the row by an assumed numerical primary key. The data keyword
projects a value with provenance to just the data, thus the DATA rule
says that the data-part has type o if the term has type Prov o.

The TABLE rule introduces Prov types. As in Links, the program-
mer declares a table t with some columns li that contain values
of base types oi. In PLinks, the additional prov clause allows pro-
grammers to declare a function fp for each of a subset lp of the
columns li. This function will be used to compute the provenance of
a value of column p. It take a database row as its input and produces
a provenance record (PR) and needs to be database-executable. The
type of a table declaration is list of records with the declared fields.
Fields lp that appear in the prov clause have type Prov op. Fields li
without provenance have just type oi.

Note that all operations that would introduce “bottom” prove-
nance in Buneman et al.’s presentation of where-provenance are
ill-typed in PLinks. We have decided against adding a “bottom” con-
structor and corresponding type rule for now. It would weaken the
guarantees the provenance type gives us and it seems like most, if
not all, cases where it is useful can be covered by wrapping values
in an explicit representation of alternatives, like Haskell’s Either.

3.2 Translation

We intend to implement PLinks, as indicated in Figure 3, by
translating PLinks programs into Links programs. Thus, we need
to express the new keywords and types of PLinks in terms of Links
features.

As an example of the translation, we will translate the query
block in Figure 2. It refers to the top comments table, filters out
tuples based on their provenance using the watch comment function,
and finally returns the contents of the text column together with its
provenance. We translate this piece of PLinks code into the Links
code shown in Figure 5.

Types of the form Prov o are special during type checking. After
that, we replace them by record types with a data and prov field. The
data field has type o and will contain the actual data. The data field
has the usual provenance record type and will contain provenance
metadata. In the example, we see the translation of Prov o types in
the signature of watch comment. Where there used to be Prov String
in Figure 2, there is a record type in Figure 5.

In the body of watch comment we see how to translate the PLinks
keywords prov and data. Corresponding to the translation of the
Prov o type, they are simply translated into projections. Note that
the less restrictive record types, compared to Prov o, do not enable
programmers to circumvent the type system restrictions because we
only translate programs that have passed the more restrictive type
checker already.

So far, the translation was very straightforward syntactic sugar
on top of records. Thus, the meat of the translation has to happen
in creating these records. Indeed, we see that where we have just
a reference to top comments in Figure 2, we have a whole nested

sig watch comment :
((data: String,
prov: (relation: String, column: String, row: Int))) -> Bool

fun watch comment(c) {
c.prov.relation == ”watch” || c.data =⇠ /.*pWatch.*/

}

query {
for (c <-- (for (c prime <-- top comments)

[(id = c prime.id,
text = (data = c prime.text,

prov = (fun (c) { (relation = c.origin table,
column = c.origin column,
row = c.origin row) })

(c prime)))]))
where (watch comment(c.text))
[(text = c.text)]

}

Figure 5. Translated query block from Figure 2.

SELECT
c.text AS text data,
c.origin column AS text prov column,
c.origin table AS text prov relation,
c.origin row AS text prov row

FROM top comments AS c
WHERE c.origin table = ’watch’ OR c.text LIKE ’%pWatch%’

Figure 6. SQL query generated for the code from Figures 2 and 5.

for comprehension in Figure 5. This for comprehension attaches
provenance to the tuples of the top comments relation. Columns
whose provenance we do not care about get copied directly. In the
example this is the id column and we omit code that copies the
origin * columns, as they are not used. Columns with provenance,
in the example only text, are replaced by a record. The data
field contains the actual value. The prov field contains the value’s
provenance. The provenance is computed by calling the function
from the prov clause of the table declaration on each row c prime.

Readers who are very familiar with Links might have noticed
that the type of the query block is [(text: (data: String, prov: ...))],
which is not legal in Links. Query blocks have to have flat relational
type, that is a list of records with fields of base type, whereas here
we have a list of records with fields of record type. The solution is to
flatten down the record for generating the SQL query, and build only
build it up after receiving the results from the database. There is a
version of Links that deals with nested collections [6] that contains
code to that end which we could port to mainline Links. Giorgidze
et al. [11] do similar things for any nonrecursive algebraic data type.
Alternatively, we could extend the translation described here to emit
the necessary post-processing step instead of extending Links.

Assuming a suitable flattening, Links will do its usual query
normalization and generate an SQL query similar to the one in
Figure 6. The actual normalization algorithm has been described
in detail elsewhere [8, 15]. A well-typed query block is guaranteed
to result in a single SQL query. This result carries over to PLinks
because where-provenance does not lead to nested collection types
in the query result. Every “cell” is paired up with at most one triple of
provenance metadata. Thus, Links will always generate a reasonable
query even when the input looks somewhat convoluted like the
nested for comprehensions, function applications, and intermediate
records and projections in Figure 5.
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Figure 4. Additional typing rules compared to Links [15].

the row by an assumed numerical primary key. The data keyword
projects a value with provenance to just the data, thus the DATA rule
says that the data-part has type o if the term has type Prov o.

The TABLE rule introduces Prov types. As in Links, the program-
mer declares a table t with some columns li that contain values
of base types oi. In PLinks, the additional prov clause allows pro-
grammers to declare a function fp for each of a subset lp of the
columns li. This function will be used to compute the provenance of
a value of column p. It take a database row as its input and produces
a provenance record (PR) and needs to be database-executable. The
type of a table declaration is list of records with the declared fields.
Fields lp that appear in the prov clause have type Prov op. Fields li
without provenance have just type oi.

Note that all operations that would introduce “bottom” prove-
nance in Buneman et al.’s presentation of where-provenance are
ill-typed in PLinks. We have decided against adding a “bottom” con-
structor and corresponding type rule for now. It would weaken the
guarantees the provenance type gives us and it seems like most, if
not all, cases where it is useful can be covered by wrapping values
in an explicit representation of alternatives, like Haskell’s Either.

3.2 Translation

We intend to implement PLinks, as indicated in Figure 3, by
translating PLinks programs into Links programs. Thus, we need
to express the new keywords and types of PLinks in terms of Links
features.

As an example of the translation, we will translate the query
block in Figure 2. It refers to the top comments table, filters out
tuples based on their provenance using the watch comment function,
and finally returns the contents of the text column together with its
provenance. We translate this piece of PLinks code into the Links
code shown in Figure 5.

Types of the form Prov o are special during type checking. After
that, we replace them by record types with a data and prov field. The
data field has type o and will contain the actual data. The data field
has the usual provenance record type and will contain provenance
metadata. In the example, we see the translation of Prov o types in
the signature of watch comment. Where there used to be Prov String
in Figure 2, there is a record type in Figure 5.

In the body of watch comment we see how to translate the PLinks
keywords prov and data. Corresponding to the translation of the
Prov o type, they are simply translated into projections. Note that
the less restrictive record types, compared to Prov o, do not enable
programmers to circumvent the type system restrictions because we
only translate programs that have passed the more restrictive type
checker already.

So far, the translation was very straightforward syntactic sugar
on top of records. Thus, the meat of the translation has to happen
in creating these records. Indeed, we see that where we have just
a reference to top comments in Figure 2, we have a whole nested

sig watch comment :
((data: String,
prov: (relation: String, column: String, row: Int))) -> Bool

fun watch comment(c) {
c.prov.relation == ”watch” || c.data =⇠ /.*pWatch.*/

}

query {
for (c <-- (for (c prime <-- top comments)

[(id = c prime.id,
text = (data = c prime.text,

prov = (fun (c) { (relation = c.origin table,
column = c.origin column,
row = c.origin row) })

(c prime)))]))
where (watch comment(c.text))
[(text = c.text)]

}

Figure 5. Translated query block from Figure 2.

SELECT
c.text AS text data,
c.origin column AS text prov column,
c.origin table AS text prov relation,
c.origin row AS text prov row

FROM top comments AS c
WHERE c.origin table = ’watch’ OR c.text LIKE ’%pWatch%’

Figure 6. SQL query generated for the code from Figures 2 and 5.

for comprehension in Figure 5. This for comprehension attaches
provenance to the tuples of the top comments relation. Columns
whose provenance we do not care about get copied directly. In the
example this is the id column and we omit code that copies the
origin * columns, as they are not used. Columns with provenance,
in the example only text, are replaced by a record. The data
field contains the actual value. The prov field contains the value’s
provenance. The provenance is computed by calling the function
from the prov clause of the table declaration on each row c prime.

Readers who are very familiar with Links might have noticed
that the type of the query block is [(text: (data: String, prov: ...))],
which is not legal in Links. Query blocks have to have flat relational
type, that is a list of records with fields of base type, whereas here
we have a list of records with fields of record type. The solution is to
flatten down the record for generating the SQL query, and build only
build it up after receiving the results from the database. There is a
version of Links that deals with nested collections [6] that contains
code to that end which we could port to mainline Links. Giorgidze
et al. [11] do similar things for any nonrecursive algebraic data type.
Alternatively, we could extend the translation described here to emit
the necessary post-processing step instead of extending Links.

Assuming a suitable flattening, Links will do its usual query
normalization and generate an SQL query similar to the one in
Figure 6. The actual normalization algorithm has been described
in detail elsewhere [8, 15]. A well-typed query block is guaranteed
to result in a single SQL query. This result carries over to PLinks
because where-provenance does not lead to nested collection types
in the query result. Every “cell” is paired up with at most one triple of
provenance metadata. Thus, Links will always generate a reasonable
query even when the input looks somewhat convoluted like the
nested for comprehensions, function applications, and intermediate
records and projections in Figure 5.

(this part is based on where-prov translation
 from [BCV08] + inlining table prov definition)
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the row by an assumed numerical primary key. The data keyword
projects a value with provenance to just the data, thus the DATA rule
says that the data-part has type o if the term has type Prov o.

The TABLE rule introduces Prov types. As in Links, the program-
mer declares a table t with some columns li that contain values
of base types oi. In PLinks, the additional prov clause allows pro-
grammers to declare a function fp for each of a subset lp of the
columns li. This function will be used to compute the provenance of
a value of column p. It take a database row as its input and produces
a provenance record (PR) and needs to be database-executable. The
type of a table declaration is list of records with the declared fields.
Fields lp that appear in the prov clause have type Prov op. Fields li
without provenance have just type oi.

Note that all operations that would introduce “bottom” prove-
nance in Buneman et al.’s presentation of where-provenance are
ill-typed in PLinks. We have decided against adding a “bottom” con-
structor and corresponding type rule for now. It would weaken the
guarantees the provenance type gives us and it seems like most, if
not all, cases where it is useful can be covered by wrapping values
in an explicit representation of alternatives, like Haskell’s Either.

3.2 Translation

We intend to implement PLinks, as indicated in Figure 3, by
translating PLinks programs into Links programs. Thus, we need
to express the new keywords and types of PLinks in terms of Links
features.

As an example of the translation, we will translate the query
block in Figure 2. It refers to the top comments table, filters out
tuples based on their provenance using the watch comment function,
and finally returns the contents of the text column together with its
provenance. We translate this piece of PLinks code into the Links
code shown in Figure 5.

Types of the form Prov o are special during type checking. After
that, we replace them by record types with a data and prov field. The
data field has type o and will contain the actual data. The data field
has the usual provenance record type and will contain provenance
metadata. In the example, we see the translation of Prov o types in
the signature of watch comment. Where there used to be Prov String
in Figure 2, there is a record type in Figure 5.

In the body of watch comment we see how to translate the PLinks
keywords prov and data. Corresponding to the translation of the
Prov o type, they are simply translated into projections. Note that
the less restrictive record types, compared to Prov o, do not enable
programmers to circumvent the type system restrictions because we
only translate programs that have passed the more restrictive type
checker already.

So far, the translation was very straightforward syntactic sugar
on top of records. Thus, the meat of the translation has to happen
in creating these records. Indeed, we see that where we have just
a reference to top comments in Figure 2, we have a whole nested

sig watch comment :
((data: String,
prov: (relation: String, column: String, row: Int))) -> Bool

fun watch comment(c) {
c.prov.relation == ”watch” || c.data =⇠ /.*pWatch.*/

}

query {
for (c <-- (for (c prime <-- top comments)

[(id = c prime.id,
text = (data = c prime.text,

prov = (fun (c) { (relation = c.origin table,
column = c.origin column,
row = c.origin row) })

(c prime)))]))
where (watch comment(c.text))
[(text = c.text)]

}

Figure 5. Translated query block from Figure 2.

SELECT
c.text AS text data,
c.origin column AS text prov column,
c.origin table AS text prov relation,
c.origin row AS text prov row

FROM top comments AS c
WHERE c.origin table = ’watch’ OR c.text LIKE ’%pWatch%’

Figure 6. SQL query generated for the code from Figures 2 and 5.

for comprehension in Figure 5. This for comprehension attaches
provenance to the tuples of the top comments relation. Columns
whose provenance we do not care about get copied directly. In the
example this is the id column and we omit code that copies the
origin * columns, as they are not used. Columns with provenance,
in the example only text, are replaced by a record. The data
field contains the actual value. The prov field contains the value’s
provenance. The provenance is computed by calling the function
from the prov clause of the table declaration on each row c prime.

Readers who are very familiar with Links might have noticed
that the type of the query block is [(text: (data: String, prov: ...))],
which is not legal in Links. Query blocks have to have flat relational
type, that is a list of records with fields of base type, whereas here
we have a list of records with fields of record type. The solution is to
flatten down the record for generating the SQL query, and build only
build it up after receiving the results from the database. There is a
version of Links that deals with nested collections [6] that contains
code to that end which we could port to mainline Links. Giorgidze
et al. [11] do similar things for any nonrecursive algebraic data type.
Alternatively, we could extend the translation described here to emit
the necessary post-processing step instead of extending Links.

Assuming a suitable flattening, Links will do its usual query
normalization and generate an SQL query similar to the one in
Figure 6. The actual normalization algorithm has been described
in detail elsewhere [8, 15]. A well-typed query block is guaranteed
to result in a single SQL query. This result carries over to PLinks
because where-provenance does not lead to nested collection types
in the query result. Every “cell” is paired up with at most one triple of
provenance metadata. Thus, Links will always generate a reasonable
query even when the input looks somewhat convoluted like the
nested for comprehensions, function applications, and intermediate
records and projections in Figure 5.

(this part relies on query translation 
already supported by Links)
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the row by an assumed numerical primary key. The data keyword
projects a value with provenance to just the data, thus the DATA rule
says that the data-part has type o if the term has type Prov o.

The TABLE rule introduces Prov types. As in Links, the program-
mer declares a table t with some columns li that contain values
of base types oi. In PLinks, the additional prov clause allows pro-
grammers to declare a function fp for each of a subset lp of the
columns li. This function will be used to compute the provenance of
a value of column p. It take a database row as its input and produces
a provenance record (PR) and needs to be database-executable. The
type of a table declaration is list of records with the declared fields.
Fields lp that appear in the prov clause have type Prov op. Fields li
without provenance have just type oi.

Note that all operations that would introduce “bottom” prove-
nance in Buneman et al.’s presentation of where-provenance are
ill-typed in PLinks. We have decided against adding a “bottom” con-
structor and corresponding type rule for now. It would weaken the
guarantees the provenance type gives us and it seems like most, if
not all, cases where it is useful can be covered by wrapping values
in an explicit representation of alternatives, like Haskell’s Either.

3.2 Translation

We intend to implement PLinks, as indicated in Figure 3, by
translating PLinks programs into Links programs. Thus, we need
to express the new keywords and types of PLinks in terms of Links
features.

As an example of the translation, we will translate the query
block in Figure 2. It refers to the top comments table, filters out
tuples based on their provenance using the watch comment function,
and finally returns the contents of the text column together with its
provenance. We translate this piece of PLinks code into the Links
code shown in Figure 5.

Types of the form Prov o are special during type checking. After
that, we replace them by record types with a data and prov field. The
data field has type o and will contain the actual data. The data field
has the usual provenance record type and will contain provenance
metadata. In the example, we see the translation of Prov o types in
the signature of watch comment. Where there used to be Prov String
in Figure 2, there is a record type in Figure 5.

In the body of watch comment we see how to translate the PLinks
keywords prov and data. Corresponding to the translation of the
Prov o type, they are simply translated into projections. Note that
the less restrictive record types, compared to Prov o, do not enable
programmers to circumvent the type system restrictions because we
only translate programs that have passed the more restrictive type
checker already.

So far, the translation was very straightforward syntactic sugar
on top of records. Thus, the meat of the translation has to happen
in creating these records. Indeed, we see that where we have just
a reference to top comments in Figure 2, we have a whole nested

sig watch comment :
((data: String,
prov: (relation: String, column: String, row: Int))) -> Bool

fun watch comment(c) {
c.prov.relation == ”watch” || c.data =⇠ /.*pWatch.*/

}

query {
for (c <-- (for (c prime <-- top comments)

[(id = c prime.id,
text = (data = c prime.text,

prov = (fun (c) { (relation = c.origin table,
column = c.origin column,
row = c.origin row) })

(c prime)))]))
where (watch comment(c.text))
[(text = c.text)]

}

Figure 5. Translated query block from Figure 2.

SELECT
c.text AS text data,
c.origin column AS text prov column,
c.origin table AS text prov relation,
c.origin row AS text prov row

FROM top comments AS c
WHERE c.origin table = ’watch’ OR c.text LIKE ’%pWatch%’

Figure 6. SQL query generated for the code from Figures 2 and 5.

for comprehension in Figure 5. This for comprehension attaches
provenance to the tuples of the top comments relation. Columns
whose provenance we do not care about get copied directly. In the
example this is the id column and we omit code that copies the
origin * columns, as they are not used. Columns with provenance,
in the example only text, are replaced by a record. The data
field contains the actual value. The prov field contains the value’s
provenance. The provenance is computed by calling the function
from the prov clause of the table declaration on each row c prime.

Readers who are very familiar with Links might have noticed
that the type of the query block is [(text: (data: String, prov: ...))],
which is not legal in Links. Query blocks have to have flat relational
type, that is a list of records with fields of base type, whereas here
we have a list of records with fields of record type. The solution is to
flatten down the record for generating the SQL query, and build only
build it up after receiving the results from the database. There is a
version of Links that deals with nested collections [6] that contains
code to that end which we could port to mainline Links. Giorgidze
et al. [11] do similar things for any nonrecursive algebraic data type.
Alternatively, we could extend the translation described here to emit
the necessary post-processing step instead of extending Links.

Assuming a suitable flattening, Links will do its usual query
normalization and generate an SQL query similar to the one in
Figure 6. The actual normalization algorithm has been described
in detail elsewhere [8, 15]. A well-typed query block is guaranteed
to result in a single SQL query. This result carries over to PLinks
because where-provenance does not lead to nested collection types
in the query result. Every “cell” is paired up with at most one triple of
provenance metadata. Thus, Links will always generate a reasonable
query even when the input looks somewhat convoluted like the
nested for comprehensions, function applications, and intermediate
records and projections in Figure 5.

(this part relies on query translation 
already supported by Links)

Sort of obvious in 
this case, but less 
so for complex 

queries



(Desired) properties
• Type-safety (as usual)

• added features (extra provenance "plumbing") also 
translate to type-safe Links code

• Provenance-safety: a value of type Prov t really does 
have "valid" provenance

• Provenance cannot be forged!

• No special "null" / bottom value needed for "no 
provenance" either

• Provenance isn't discarded "by accident" (have to use 
data to extract raw data)



Current status / 
related work

• Preliminary implementation of basic translation

• able to generate queries

• does not execute them or return results yet

• To do next: implement Prov type, operations, and rest of 
translation

• Using data extractor is a little painful - can we infer it?

• Longer term: consider other forms of provenance (why, how)

• maybe using shredding to deal with set-valued annotations [C., Lindley, 
Wadler SIGMOD 2014]

• or adapt other existing translations (Perm, [Alonso & Glavic 2009])

• Also: where-provenance for updates? (cf. [Buneman, Chapman, C. 
2006], [BCV08])



Conclusions
• A typed/FP cross-tier language allows greater 

hope for automation, safety analysis/checking 

• This is work in progress

• but it seems like a promising way to gain 
experience with programming with provenance 

• Of course, Links is a research prototype with 
O(1) users...

• Also plan to look into transplanting ideas to other 
settings (e.g. LINQ in C#, F#, Scala? Python!?) 


