
Cell-Based Causality for Data Repairs

Maxime Debosschere Floris Geerts
Universiteit Antwerpen, Belgium

{maxime.debosschere,floris.geerts}@uantwerpen.be

Abstract
In recent work, Salimi and Bertossi provide a tight connection be-
tween causality and tuple-based data repairs. We investigate this
connection between causality and two other kinds of repair mod-
els. First, we consider cell-based V -repairs, i.e., repairs that are
obtained by modifying cells in the data. In contrast, tuple-based re-
pairs only allow for the deletion of tuples. Second, we introduce a
new notion of repairs, called chase repairs, that take into account
the procedural (chase) steps that lead to a repair. We establish a
connection between causes (and the associated notion of respon-
sibility) and V -repairs, and analyse the complexity of verifying
whether a cell is a cause and whether its responsibility is above
a certain threshold. Our understanding of chase repairs is still very
preliminary, and we argue that provenance models that are specifi-
cally targeted to data repairs and data quality in general are needed
to make formal connections between causality and chase repairs.

Categories and Subject Descriptors H.2.4. [Database Manage-
ment]: Systems—Relational databases
General Terms Algorithms, Theory
Keywords Data Repair, Causality, Data Quality

1. Introduction
Causality is related to provenance, yet it is a more refined notion
that can provide reasons and explanations for wrong or surprising
results, by ranking provenance based on the notion of responsibil-
ity. It has been discussed in relation to data and workflow prove-
nance. We refer to Meliou et al. [5, 6] for a comprehensive survey
of related work in this context.

Inspired by the work by Salimi and Bertossi [7], we explore con-
nections between causality and database repairs. Database repairs
are important when consistent query answering is concerned [1]
and for data cleaning [2]. In [7], it is shown how to obtain database
repairs from causes, and the other way around. Furthermore, a
strong connection is unveiled between computing causes and their
responsibilities for conjunctive queries, on the one hand, and com-
puting both subset-based and cardinality-based repairs in databases
with regard to denial constraints, on the other hand.

In the first part of this paper, we extend these connections from
tuple-based repairs, such as the subset-based and cardinality-based
repairs considered in [7] to cell-based repairs, which are often used

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page.
TaPP 2015, July 8–9, 2015, Edinburgh, Scotland.
Copyright remains with the owner/author(s).

in practice [2]. We limit ourselves to functional dependencies as
constraint language. Our results tell that the correspondences from
[7] carry over to our setting. More precisely, one can associate cell-
based repairs to causes, and vice versa. Furthermore, we provide
a PTIME algorithm for determining whether a cell in the database
is a cause for conflict with regard to functional dependencies. The
algorithm relies on a cell-based notion of lineage. By contrast, we
show that determining whether the responsibility of a cause exceeds
a certain threshold is NP-hard. Finding a matching upper bound is
left as future work.

In the second part of the paper, we identify some shortcomings
of standard repair models and propose a new kind of model, re-
ferred to as chase repairs. Intuitively, chase repairs take into ac-
count the procedural steps to obtain a repair, starting from curated
information. Causes in this context have a different meaning: they
correspond to the cells in the database that need to be curated in
order to successfully obtain a repair. In other words, rather than
corresponding to conflicts, causes have a “positive” interpretation.
They identify positions in the database on which the domain expert
should focus to establish the correctness of the values. Once this
is done, these positions can be regarded as carrying “true” and cu-
rated values, and a repair is guaranteed to exist. More importantly,
during the repair process only curated information is used, ensuring
to some extent the validity of the repair.

A full investigation of chase repairs is left as future work. One
possible way of establishing this connection is by relating causes
to some kind of lineage, just like in the first part of the paper.
However, to our knowledge, no lineage/provenance model is yet
in place that is expressive enough to model procedural repair steps.
The development of such models is of interest on its own. Indeed,
it would allow for a formal underpinning of the common belief that
provenance is useful for improving the quality of data.

2. Cell-based repairs
We first formalise the notion of cell-based data repairs. In this
paper, we consider database instances I over a single relation
R(A1, . . . , Am), where A1, . . . , Am are attributes, each equipped
with a domain dom(Ai). As usual, an instance I of R con-
sists of a finite set of tuples; a tuple simply being an element of
dom(A1) × · · · × dom(Am). A functional dependency (FD) is a
constraint of the form ϕ : X → A, where X is a set of attributes
in R and A is an attribute in R. An instance I satisfies an FD
ϕ : X → A, denoted by I |= ϕ, if for any two tuples s, t ∈ I
such that s[X] = t[X], it holds also that s[A] = t[A]. An instance
I satisfies a set Σ of FDs, denoted by I |= Σ, if I |= ϕ for each
ϕ ∈ Σ. When I |= Σ we also call I clean or consistent with regard
to Σ; otherwise I is called dirty or inconsistent.

A position p in I refers to a single database “cell” and is given
by a pair 〈t, A〉, where t stands for a particular tuple andA is a sin-
gle attribute. The value of p = 〈t, A〉 in I , denoted by val(I, p), is
t[A]. The set of all positions in an instance I is denoted by Pos(I).

FN LN City Country CC AC Phone
t1 John Lewis New York USA 01 212 509 3883
t2 David Smith New York UK 44 212 509 7639
t3 Lucas Reed New York UK 01 212 509 8291
t4 Luke White London UK 01 020 9876 0402
t5 Jane Taylor London UK 43 020 9876 3266
t6 Mark Hill London UK 44 020 9876 2911
t7 Ron Clark London UK 44 020 9876 1059
t8 Will Green Toronto Canada 01 416 511 7145
t9 Lisa Jones Toronto Canada 01 416 511 5200

(a)

City Country CC

New York USA 01
London UK 44

New York USA 01
London UK 44
Vienna Austria 43
London UK 44
London UK 44
Toronto Canada 01
Toronto Canada 01

(b)

City Country CC

New York USA 01
London UK 44

New York USA 01
London UK 44
London UK 44
London UK 44
London UK 44
Toronto Canada 01
Toronto Canada 01

(c)

Σ = {ϕ1 : City → Country, ϕ2 : Country → CC}

Figure 1. (a) Example of a database instance I with a set of functional dependencies Σ. Bold values belong to positions that are causes. (b)
A possible SV-repair. (c) The only possible CV-repair.

In analogy to [4], we represent possible value modifications in
I by means of V -instances. The difference between a V-instance
and a “normal” instance is that tuples may contain variables. More
specifically, if P ⊆ Pos(I) then we denote by IP the instance I in
which the value of every position p = 〈t, A〉 in P is replaced by a
unique variable vp, and IP agrees with I on all other positions not
in P . Intuitively, the positions in P indicate those positions in I to
which value modifications will be applied.

Which values that these positions take is formalised by means of
valuations. The domain of each variable vp in IP , dom(vp), is the
domain of the attribute corresponding to position p. A valuation
ν of IP is an assignment of the variables vp to constants in their
respective domains. By extending such valuation to the identity
on constants, we denote by ν(IP) the (standard) database instance
consisting of tuples ν(t) = (ν(t[A1]), . . . , ν(t[Am])) for t ∈ I .

Definition 1 (V-repair). Given an instance I , set Σ of FDs, and a
set P ⊆ Pos(I), we say that the V -instance IP is a V -repair for
(I,Σ) if there exists a valuation ν of IP such that ν(IP) |= Σ.

In other words, in case that I 6|= Σ, it suffices to change
values in the positions in P to obtain a clean instance ν(IP), i.e.,
ν(IP) |= Σ.

We next identify two special classes of V -repairs corresponding
to the standard notions of subset-repairs (S-repairs) and cardinality-
repairs (C-repairs) [1]. Recall that both of these repairs remove tu-
ples from inconsistent instances to make them consistent: a subset-
repair removes a minimal subset of tuples to achieve consistency,
whereas a cardinality-repair removes the smallest number of tuples
overall. Clearly, every cardinality-repair is also a subset-repair. In-
spired by this, we define the following:

Definition 2 (SV-repair). A subset V-repair for (I,Σ) is a V -repair
IP for (I,Σ) such that none of the V -instances IP ′ for P ′ (P is
a V -repair for (I,Σ).

Definition 3 (CV-repair). A cardinality V-repair for (I,Σ) is a V -
repair IP for (I,Σ) such that there does not exist a V -repair IP ′

with |P ′| < |P |.

An alternative point of view of SV- and CV-repairs is given as
follows. Define the modification M(I, I ′) between two instances
I and I ′ as those positions p ∈ Pos(I) such that val(I, p) 6=
val(I ′, p). The modification distance ∆(I, I ′) between two in-
stances I and I ′ is defined as |M(I, I ′)|. Then, an SV-repair IP
of (I,Σ) corresponds to an instance I ′ |= Σ (by means of a valua-
tion) such that there is no instance I ′′ |= Σ for which M(I, I ′′) (
M(I, I ′). Similarly, a CV-repair IP of (I,Σ) corresponds to an in-
stance I ′ |= Σ such that there is no instance I ′′ |= Σ for which
∆(I, I ′′) < ∆(I, I ′).

Example 1. Consider the database instance I and the set of
functional dependencies Σ given in Figure 1a. For every em-

ployee, the instance stores the first name (FN), last name (LN),
city of residence (City), country in which that city is located
(Country), country code (CC), area code (AC), and phone num-
ber (Phone). The set of functional dependencies is Σ = {ϕ1 :
City → Country, ϕ2 : Country → CC}. An example of an
SV-repair IP for (I,Σ) is obtained by choosing positions P =
{〈t2, City〉, 〈t3, Country〉, 〈t4, CC〉, 〈t5, City〉, 〈t5, Country〉}.
Indeed, a valuation ν of these positions such that ν(IP) |= Σ
is depicted in Figure 1b. It can be readily verified that no sub-
set P ′ (P of positions can lead to a V -repair IP ′ of (I,Σ).
However, IP is not a CV-repair. Indeed, consider positions P ′ =
{〈t2, City〉, 〈t3, Country〉, 〈t4, CC〉, 〈t5, CC〉}. Again, IP ′ is a V -
repair. Figure 1c shows a valuation ν′ such that ν′(IP ′) |= Σ.
Observe that 4 = |P ′| < |P | = 5. It can be easily verified that
there exists no V -repair in which less than four positions are mod-
ified. Hence, IP ′ is a CV-repair. In fact, it is the only possible
CV-repair for (I,Σ).

The notion of V -repairs was studied by Kolahi and Laksh-
manan [4]. In particular, they established the intractability of the
V -REPAIR EXISTENCE PROBLEM. This problem is to determine,
given an instance I , set Σ of FDs and integer value k, whether
there exists a V -repair IP for (I,Σ) such that |P | < k. They show
that the V -REPAIR EXISTENCE PROBLEM is NP-complete even in
the simple setting where Σ consists of two fixed unary FDs.

3. Causality and cell-based repairs
We next turn our attention to causality. More specifically, we want
to identify the causes for inconsistencies in dirty database instances
and rank these causes in terms of their responsibility. Causality in
databases was defined on the level of tuples [5] and has been used
in the context of tuple-based repairs by Salimi and Bertossi [7].
We revisit the notion of causality on the level of individual cells
(positions). More specifically, consider a database instance I and a
set of functional dependencies Σ.

Definition 4 (Causality). A position p ∈ Pos(I) is a cause for
(I,Σ) if there exists at least one set Γ ⊂ Pos(I), called a contin-
gency set for p, such that IΓ∪p is a V-repair but IΓ is not a V-repair.

In other words, p is a cause when modifying I only in positions
taken from Γ does not suffice to repair the data, but when p is also
modified, a repair can be obtained.

For a cause p, all contingency sets from p with the lowest cardi-
nality are called minimal contingency sets (Γm). The responsibility
of a cause is then defined, following [5], as follows:

Definition 5 (Degree of responsibility). Position p has a degree of
responsibility ρ(p) of 1

|Γm|+1
.

By convention, positions p that are not causes have a degree of
responsibility ρ(p) = 0.

Example 2. Continuing with the previous example, we have dis-
played all causes for (I,Σ) in bold in Figure 1a. Indeed, for every
of these positions p, a contingency set Γ ⊂ Pos(I) can be found for
which IΓ∪p is a V-repair but IΓ is not a V-repair. For example, con-
sider the cause p = 〈t5, City〉 for (I,Σ). Its minimal contingency
set is Γ = {〈t2, City〉, 〈t3, Country〉, 〈t4, CC〉, 〈t5, Country〉}.
Hence p has a degree of responsibility of 1

|Γ|+1
= 0.20. Note that

IΓ∪p is equal to the V -repair IP given in Example 1. The degree of
responsibility may differ among causes. To illustrate this, consider
the cause p′ = 〈t3, Country〉 for (I,Σ). Its minimal contingency
set is Γ′ = {〈t2, City〉, 〈t4, CC〉, 〈t5, CC〉}, yielding a responsibil-
ity of 0.25. Since the degree of responsibility of p′ is higher than
that of p, it can be derived from this that position p′ has a greater in-
volvement than p in the conflicts from (I,Σ). In this example, both
p and p′ have only one minimal contingency set, but it is possible
for positions to have multiple such sets.

Given the revised notion of a cause, we next revisit the following
two problems (taken from [5]):

Causality problem: Given I and Σ, compute all causes for (I,Σ).

Responsibility problem: Given I , Σ, cause p for (I,Σ) and ratio-
nal number r, decide whether ρ(p) > r.

More specifically, we are interested in the data complexity of these
problems, where Σ is fixed and the complexity is a function of the
size of the database instance I .

3.1 The causality problem
We show that the causality problem, for causes as given in Defini-
tion 4, is in PTIME. First, we recall what is known in the tuple-
based repair setting. Note that Meliou et al. [5] also provide a
PTIME algorithm for the causality problem, however, causality is
there defined in terms of tuple deletions and relative to conjunc-
tive queries. More specifically, a tuple t is said to be a cause for
instance I and a boolean conjunctive query q if there exists a set
of tuples Γt ⊆ I such that (I \ Γt) |= q, i.e., q returns true when
evaluated on I \ Γt, but (I \ (Γt ∪ {t})) 6|= q. Salimi and Bertossi
[7] observe that this notion can be used when tuple-based repairs
are concerned, and this for general classes of constraints (denial
constraints).

More specifically, rephrased in the context of FDs, Salimi and
Bertossi [7] observe that one can associate with a set Σ of FDs
a union of boolean conjunctive queries qΣ = ∪ϕ∈Σqϕ, where
for ϕ : X → A in Σ, qϕ = ∃x̄, ȳ, ȳ′, xA, x′A (R(x̄, xA, ȳ) ∧
R(x̄, x′A, ȳ

′) ∧ xA 6= x′A). Clearly, I |= qΣ iff I 6|= Σ. Causes
are then defined relative to I and qΣ and are closely related to
subset and cardinality repairs. Furthermore, it is shown in [7] that
the PTIME algorithm for the causality problem given in [5] can
be extended from a single boolean conjunctive query to a union of
such queries, which is required to deal with qΣ.

Example 3. Recall the set of functional dependencies Σ given in
Figure 1a, i.e., Σ = {ϕ1 : City → Country, ϕ2 : Country →
CC}. The conjunctive query qϕ1 = ∃ ci, ctr, fn, ln, cc, ac, p, ctr’, fn’,
ln’,cc’, ac’, p’

(
R(fn, ln, ci, ctr, cc, ac, p) ∧R(fn’, ln’, ci, ctr’, cc’,

ac’, p’) ∧ ctr 6= ctr’
)

evaluates to true on instance I iff a violation
of the FD ϕ1 exists in I . Similarly for qϕ2 . Finally, the union of
these boolean queries qΣ = qϕ1 ∪qϕ2 allows for detecting whether
or not Σ is violated on an instance.

In the context of FDs, the PTIME algorithm for the causality
problem works by computing the lineage of qΣ relative to I . The
lineage is computed in the standard way, i.e., each tuple t ∈
I is adorned with a variable Xt, and these variables are then
subsequently combined by means of the logical operators ∧ and
∨ based on the structure of qΣ. It is easily verified that the lineage

Φ of qΣ on instance I is given by

Φ =
∨

(s,t)∈vio(I,Σ)

Xs ∧Xt,

where Xs and Xt are boolean variables corresponding to tuples s
and t, and where vio(I,Σ) is the set of all tuples in I that make up
a violation of an FD in Σ.

Example 4. Continuing with the previous example, one can eas-
ily verify that vio(I,Σ) consists all pairs of tuples taken from
{t1, t2, t3} and pairs taken from {t4, t5, t6, t7}. The lineage of the
query qΣ given in the previous example is equivalent to (Xt1 ∧
Xt2)∨(Xt1 ∧Xt3)∨(Xt2 ∧Xt3)∨(Xt4 ∧Xt5)∨(Xt4 ∧Xt6)∨
(Xt4 ∧Xt7) ∨ (Xt5 ∧Xt6) ∨ (Xt5 ∧Xt7) ∨ (Xt6 ∧Xt7).

The results by Meliou et al. [5] imply that a tuple t in I is a cause
if and only if Xt appears in Φ 1. This can be checked in PTIME.

Example 5. Continuing with the previous example, note that every
tuple in t ∈ vio(I,Σ) occurs as Xt in the lineage Φ of qΣ.
Furthermore, one can easily verify that Φ only contains variables
Xt for tuples t ∈ vio(I,Σ).

In fact, the correspondence shown in the previous example
always holds:

Observation 1. For instance I and set Σ of FDs, a tuple t ∈ I is a
cause for qΣ iff t ∈ vio(I,Σ).

Since vio(I,Σ) can be computed in PTIME, the causality prob-
lem is indeed in PTIME in the tuple-based setting. This concludes
our short recap of what is known in the tuple-based setting. We next
consider the cell-based setting.

As it turns out, a similar correspondence exists between causes
in our setting (Definition 4) and so-called violating positions, which
we formally define below. First, we revise the notion of lineage
from tuple to cell level by introducing variables corresponding to
positions. That is, for a position p = 〈t, A〉 we let XA

t be its
corresponding variable. Consider an FD ϕ : [B1, . . . , B`] → C
and corresponding boolean query qϕ. Let s and t be two tuples in
vio(I, ϕ). We encode this violation of ϕ by the cell lineage

(XB1
s = XB1

t) ∧ · · · ∧ (XB`
s = X

B`
t) ∧ (XC

s 6= XC
t),

which we also denote by s[B1, . . . , B`] = t[B1, . . . , B`]∧s[C] 6=
t[C]. Consequently, the cell lineage for ϕ is then given by

Φϕ =
∨

s,t∈vio(I,ϕ)

s[B1, . . . , B`] = t[B1, . . . , B`] ∧ s[C] 6= t[C]

and the cell lineage for Σ is given by Φ =
∨

ϕ∈Σ Φϕ.

Example 6. Recall the lineage Φ given in Example 4 and consider
the disjunct Xt1 ∧ Xt3 in Φ corresponding to a violation of ϕ2 :
Country → CC. In the cell-based lineage Xt1 ∧ Xt3 is replaced
by (XCountry

t1
= XCountry

t3
) ∧ (XCC

t1 6= XCC
t3). Similarly for all other

disjuncts in Φ.

The semantics of Φ is as expected: I |= (XA
s = XA

t) iff
val(I, 〈s,A〉) = val(I, 〈t, A〉) and thus I |= Φ iff I 6|= Σ.

In the cell-based setting, however, the full cell-lineage as de-
fined just now exhibits certain redundancies. In analogy to [5], we
say that a disjunct s[V] = t[V] ∧ s[C] 6= t[C] in Φ is redundant if
Φ contains another disjunct of the form s[U] = t[U]∧s[C] 6= t[C]
with U (V . Clearly, redundant disjuncts can be identified in
PTIME and can be omitted from the lineage: they do not add any
additional information. We denote by Φnr the disjunction obtained

1 For constraints beyond FDs, an additional pruning of redundant terms in
Φ is required [5].

from Φ by removing all its redundant disjuncts. We call Φnr the re-
duced cell lineage. With this in place, we can make the connection
between cell-based causes and lineage precise:

Theorem 1. Let I be a database instance and Σ a set of FDs. Then
p = 〈t, A〉 is a cause for (I,Σ) if XA

t occurs in the reduced cell
lineage Φnr .

An immediate consequence is that the causality problem is also
in PTIME when cell-based repairs and FDs are concerned. Indeed,
Φnr can be computed in PTIME.

Example 7. The need for only considering non-redundant dis-
juncts is illustrated by the following example. Consider the fol-
lowing set of FDs Σ′ = {ϕ3 : A → C, ϕ4 : AB → C} over a
relation R(A, B, C). Consider instance I ′ = {s1 = (a, b, c1), s2 =
(a, b, c2)}. Clearly, I ′ 6|= Σ′. The cell-based lineage is given by
Φ′ =

(
(sA1 = sA2) ∧ (sC1 6= sC2)

)
∨
(
(sA1 = sA2) ∧ (sB1 =

sB2) ∧ (sC1 6= sC2)
)
. The second disjunct in Φ′ is redundant. Hence,

Φ′
nr = (sA1 = sA2)∧(sC1 6= sC2). Consider position 〈s1, B〉which oc-

curs in Φ′ but not in Φ′
nr . This absence is for a good reason. Indeed,

〈s1, B〉 is not a cause. Changing the value of this position does not
resolve the violation for ϕ3. Furthermore, allowing a change in any
other position results in a repair, either by ensuring that (sA1 6= sA2)
or that (sC1 = sC2) holds. Hence, there is no contingency set for this
position. The use of the reduced cell lineage is thus crucial.

We conclude our discussion on the causality problem by pro-
viding an alternative characterisation of causes. For this purpose
we consider violating positions. That is, given an instance I and
a set Σ of FDs, we say that a position p = 〈t, A〉 is violating if
t ∈ vio(I, ϕ) for some ϕ : X → B in Σ and A ∈ X ∪B. The set
of violating positions for (I,Σ) will be denoted by viop(I,Σ).

Example 8. All positions in bold in Figure 1a are violating po-
sitions for Σ = {ϕ1 : City → Country, ϕ2 : Country →
CC}.

To rephrase Theorem 1 in terms of violating positions we reduce
the set Σ of FDs such that it is guaranteed that when the cell lineage
is computed, it is automatically reduced. More precisely, let Σnr be
the subset of Σ consisting of all FDs U → C such that there is no
FD V → C with U (V in Σ. Then, from the previous discussion
and from Theorem 1 we may conclude the following.

Observation 2. For an instance I and set Σ of FDs, a position p is
a cause for (I,Σ) iff p ∈ viop(I,Σnr).

Note that Σnr is used rather than the original set Σ.

Example 9. For Σ given in Figure 1a, observe that Σnr = Σ and
hence all bold positions in Figure 1a are causes. Indeed, these are
precisely the violating positions. Furthermore, for the set of FDs
given in Example 7, Σ′

nr = {ϕ3 : A→ C} 6= Σ′ and the violating
positions (causes) in I ′ are {〈s1, A〉, 〈s2, A〉, 〈s1, C〉, 〈s2, C〉}.

We may conclude that the notion of causality in the context
of cell-based repairs has a very intuitive interpretation in terms of
violations of FDs.

3.2 The responsibility problem
We next consider the responsibility problem. More specifically, we
show that this problem is NP-hard. Note that the intractability re-
sults of the responsibility problem given in [5] and [7] are not appli-
cable in our setting. Indeed, Meliou et al. [5] consider self-join-free
conjunctive queries whereas qϕ for ϕ ∈ Σ clearly contains self-
joins; Salimi and Bertossi [7] consider tuple-based repairs, while
we consider cell-based repairs.

Proposition 1. The responsibility problem is NP-hard.

Proof. The NP-hardness is established by a reduction from the V -
repair checking problem, stated at the end of the previous section,
which is known to be NP-complete [4]. Given an instance I of R,
set Σ of FDs and integer k as input for the repair checking problem,
we construct an instance I ′ ofR′, set Σ′ of FDs, identify a position
p ∈ Pos(I ′), and rational number r, such that ρ(p) > r if and only
if there is a V -repair IP for (I,Σ) such that |P | < k.

The construction is as follows. First, we expandR(A1, . . . , Am)
toR′(A,B,A1, . . . , Am) whereA andB are new attributes. Next,
we let Σ′ = Σ ∪ {A → B}. Furthermore, I ′ consists of the fol-
lowing tuples: for each t ∈ I , t′ = (at, bt, t) ∈ I ′ where at and
bt are constants not used anywhere else. In addition, I ′ contains
tuples s = (a, b, c1, . . . , cm) and t = (a, b′, d1, . . . , dm), again
using new constants. Finally, we set r = 1

k+1
and let p = 〈t, B〉.

This concludes the construction.
We next verify its correctness. Suppose that IP is a V -repair

for (I,Σ) with |P | < k. Then clearly, I ′P is not a V -repair for
(I ′,Σ′) since s and t are violating the FD A → B, and P does
not contain any of the positions 〈s,A〉, 〈s,B〉, 〈t, A〉, and 〈t, B〉.
Observe, however, that I ′P∪p is a V -repair for (I ′,Σ′). Indeed,
it suffices to extend the valuation ν(IP) |= Σ to the valuation
ν′ of I ′P∪p such that ν′(t[B]) = s[B], ν′ coincides with ν on
positions in I , and ν′ is the identity everywhere else. Clearly,
ν′(I ′P∪p) |= Σ′. Hence, P is a contingency set for p. We thus
have that ρ(p) = 1

1+|Γm| >
1

1+|P | >
1

1+k
= r, as desired.

Conversely, suppose that ρ(p) > r and consider the minimal
contingency set Γm for p and (I ′,Σ′). From the construction of I ′

and Σ′ it can be readily verified that Γm can only contain positions
in Pos(I). However, since I ′Γm∪p is a V -repair for (I ′,Σ′) it
must be the case that IΓm is a V -repair for (I,Σ). Observe that
|Γm| < 1

r
− 1 = k. Hence, there is a V -repair IP for (I,Σ) such

that |P | < k, as desired.

For the upper bound, we only have the trivial Σp
2 = NPNP upper

bound for the responsibility problem. Indeed, one can (i) simply
guess a set Γ of at most 1

r
− 1 positions in I , and verify that (ii) IΓ

is not a V -repair for (I,Σ) and (iii) IΓ∪p is a V -repair. Step (ii)
requires a call to an coNP-oracle and step (iii) requires a call to
an NP-oracle. Hence, the overall algorithm is indeed in Σp

2 . We
leave it for future work to establish the precise complexity of the
responsibility problem in our setting.

3.3 Relationship to SV- and CV-repairs
In analogy to Salimi and Bertossi [7], we next relate causes and
contingency sets to SV- and CV-repairs. We need the following
notation. Given an instance I and set Σ of FDs, we define

S = {(p,Γ) | Γ is a contingency set for p and (I,Σ), and

no Γ′ (Γ is a contingency set for p and (I,Σ)}.

Proposition 2. Given I , Σ and P ⊆ Pos(I), we have that IP is
an SV-repair if and only if P = Γ ∪ p, for (p,Γ) ∈ S.

Proof. Suppose that IP is an SV-repair. Then, IP is a V -repair and
for any P ′ (P , IP ′ is not a V -repair. This implies that for any
p ∈ P , P ′ = P \ p is a contingency set of p. Suppose, for the
sake of contradiction, that there is a P ′′ (P such that P ′′ is
a contingency set of p as well. This would imply that IP ′′∪p is
a V -repair, contradicting the fact that IP is an SV-repair. Hence,
(p, P \ p) ∈ S.

Conversely, let (p,Γ) ∈ S. Then, IΓ∪p is a V -repair, whereas
IΓ is not. Suppose, for the sake of contradiction, that there is a
Γ′ (Γ ∪ p such that IΓ′ is a V -repair. In other words, that IΓ∪p is
not an SV-repair. Note that Γ′ must include p. However, this implies
that IΓ′\p is not a V -repair and thus Γ′ \ p is a contingency set

FN LN City Country CC AC Phone
t1 John Lewis New York USA 01 212 509 3883
t2 David Smith New York UK 44 212 509 7639
t3 Lucas Reed New York UK 01 212 509 8291
t4 Luke White London UK 01 020 9876 0402
t5 Jane Taylor London UK 43 020 9876 3266
t6 Mark Hill London UK 44 020 9876 2911
t7 Ron Clark London UK 44 020 9876 1059
t8 Will Green Toronto Canada 01 416 511 7145
t9 Lisa Jones Toronto Canada 01 416 511 5200

(a)

I1 =

City Country CC

New York USA 01
New York USA 44
New York USA 01
London UK 01
London UK 43
London UK 44
London UK 44
Toronto Canada 01
Toronto Canada 01

(b)

I2 =

City Country CC

New York USA 01
New York USA 44
New York USA 01
London UK 01
London UK 43
London UK 44
London UK 44
Toronto Canada 01
Toronto Canada 01

(c)

I3 =

City Country CC

New York USA 01
New York USA 01
New York USA 01
London UK 01
London UK 43
London UK 44
London UK 44
Toronto Canada 01
Toronto Canada 01

(d)

I4 =

City Country CC

New York USA 01
New York USA 01
New York USA 01
London UK 44
London UK 44
London UK 44
London UK 44
Toronto Canada 01
Toronto Canada 01

(e)

Σ = {ϕ1 : City → Country, ϕ2 : Country → CC}

Figure 2. (a) Example of chase sequence on a database instance I with a set of functional dependencies Σ as detailed in Example 12. Here,
underlined values belong to positions that are curated and grey shaded positions indicate that those positions are relevant for each of the chase
steps. The intermediate chase results I1, I2, I3 and end result I4 are shown in (b), (c), (d), and (e), respectively.

for p, which is a subset of Γ. This contradicts the assumption that
(p,Γ) ∈ S. Hence, IΓ∪p is an SV-repair, as desired.

Given that a CV-repair IP for (I,Σ) is an SV-repair such that
|P | is minimal, the following correspondence follows immediately
from the previous proposition.

Proposition 3. Given I , Σ and P ⊆ Pos(I), we have that IP is a
CV-repair if and only ifP = Γm∪p and the degree of responsibility
ρ(p) is highest among all causes for (I,Σ).

Recall that Γm is the minimal cardinality contingency set for p
and (I,Σ).

4. Chase repairs
The notions of SV-repairs and CV-repairs are not entirely satisfac-
tory in practice. Indeed, it is common that some tuples or even indi-
vidual values in an instance may be considered entirely trustworthy.
This happens, for example, when these have been manually curated
by an expert, are the result of a merge from a trusted instance with
another, or when provenance information is provided from which a
sense of trust can be derived. The repair models considered so far
largely ignore such curated positions.

Furthermore, SV-repairs and CV-repairs do not take into ac-
count any procedural aspects that underlie many of the existing
repairing algorithms (see e.g., [1, 2] for an overview of repairing
algorithms). More precisely, most repairing algorithms can be seen
as variations of the chase procedure. In such a chase procedure con-
straints are repeatedly applied (chased) until either all inconsisten-
cies have been removed, or some conflict is encountered that pre-
vents a successful repair of the data (in which case the chase fails).

In this section we propose a new repair model, called chase
repair, as an attempt to address the above shortcomings of SV-
repairs and CV-repairs. We further revisit the notion of cause in
this context and argue for the need of a provenance (lineage) model
for data quality and data repairing in particular. We start off with an
example.

Example 10. Recall the SV-repair IP and CV-repair IP ′ from Ex-
ample 1. Also consider the original instance I , but this time sup-
plemented with a set of curated positions. These curated positions
are underlined in Figure 2(a). Based on the set of curated positions,
it is readily observable that the SV-repair IP performed incorrect
value modifications at positions 〈t2, City〉 and 〈t5, City〉. Indeed,
these positions are curated and thus should not be modified. Simi-
larly, the CV-repair IP ′ performed an incorrect value modification
at position 〈t2, City〉, for the same reason.

Although one could remedy this situation by extending the no-
tion of V -repairs such that no modifications are allowed in curated
positions, we further want to use the presence of curated positions
to guide the repairing process, hereby leveraging the functional
dependencies. Abstracting away particularities of existing chase-
based repairing algorithms we observe the following: (i) when re-
solving violations of an FDX → A, the violating tuples must have
curated positions in the attributes inX; (ii) in order to repair the in-
consistency in attributeA, a unique curated value should be present,
which will be used to resolve the violation; and finally, (iii) when
such a repair has been made, the previous violating tuples now also
carry curated positions in their A-attribute. In other words, the FDs
are used to propagate curated information.

Example 11. Consider FD ϕ1 : City → Country and tuples
{t1, t2, t3} ∈ vio(I, ϕ1). These tuples all carry curated posi-
tions for attribute City and moreover 〈t1, Country〉 is curated.
This dictates that these violations should be resolved by setting
t2[Country] and t3[Country] to the value t1[Country] = USA.
Furthermore, 〈t2, Country〉 and 〈t3, Country〉 become curated,
although these positions were not originally marked as such.

We next formalise these observations in terms of chase repairs.
We first define a chase step.

Definition 6 (Chase step). Consider a database instance I , an FD
ϕ : X → A and a set of curated positions CPos(I). Let T be a
set of tuples {t1, . . . , tm} in I for which ti[X] = tj [X], for each
i, j ∈ [1,m], and furthermore, all positions in T [X] are curated.
We say that ϕ is applicable to T if either (a) there is a violation for

ϕ in T (in other words, vio(T, ϕ) is non-empty); or (b) there is no
violation but there is at least one ti ∈ T such that 〈ti, A〉 is not yet
curated.

If ϕ is applicable to T and none of the positions 〈ti, A〉 is
curated, then the result of the chase is a “fail”. Similarly, the chase
fails when there are two curated positions 〈ti, A〉 and 〈tj , A〉 that
carry distinct values. Otherwise, the chase of T with ϕ is successful
and results in an update of I in which all ti[A] carry the same value
as dictated by a curated position 〈tj , A〉; and an update of CPos(I)
by adding all the positions 〈ti, A〉, for ti ∈ T .

We denote by (I,CPos(I)) →T,ϕ (I ′,CPos(I ′)) that I ′ is
the result of chasing T in I with ϕ; similarly for CPos(I) and
CPos(I ′). A chase sequence for (I,Σ) relative to a set CPos(I) of
curated positions is a sequence of the form (I,CPos(I)) →T1,ϕ1

(I1,CPos(I1)) →T2,ϕ2 · · · →Tn,ϕn (In,CPos(In)), such that
each ϕi ∈ Σ, and no further chase steps can be applied. In this
case, we call In a result of chasing I with Σ relative to CPos(I).

Definition 7 (Chase repair). Given a database instance I , set Σ
of FDs, and an initial set of curated positions CPos(I), we say
that (I,CPos(I)) is a chase repair if there is an instance I ′ |= Σ
that can be obtained as the result of chasing I with Σ, relative to
CPos(I).

In other words, the dirty database I has been sufficiently curated
to guarantee that the chase procedure returns a clean instance I ′.

Example 12. Consider the database instance I and the set Σ of
FDs given in Figure 2a. All underlined values belong to positions
in CPos(I). Grey shaded entries indicate the set T of positions that
are used in the different chase steps. To show that (I,CPos(I))
is a chase repair, consider the following chase sequence which
starts from I and CPos(I) and then: (i) chases with FD ϕ1 and
T1 = {t1, t2, t3} to obtain a new instance I1 = I , where
val(I1, 〈t2, Country〉) = val(I1, 〈t3, Country〉) = USA. Fur-
thermore, CPos(I1) = CPos(I)∪〈t2, Country〉∪ 〈t3, Country〉,
as shown in Figure 2(b); next (ii) chases with FD ϕ1 and T2 =
{t4, t5} to obtain a new instance I2 and an updated set of curated
positions, as shown in Figure 2(c); next (iii) chases with FD ϕ2

and T3 = {t1, t2, t3} to obtain a new instance I3 and an updated
set of curated positions, as shown in Figure 2(d); and finally (iv)
chases with FD ϕ2 and T4 = {t4, t5, t6} to obtain the end result
I4 |= Σ and an updated set of curated positions, as shown in Figure
2(e).

We are particularly interested in studying the causality and re-
sponsibility problem for chase repairs. Note that causes in this set-
ting are related to positions that affect the success of chasing the
dirty instance with the FDs, rather that the cause for inconsisten-
cies.

Definition 8. A position p in Pos(I) is a cause for (I,Σ) if there
is a set of curated positions C in I such that (I, C) is not a chase
repair whereas (I, C ∪ p) is a chase repair.

In other words, p together with C must be curated in order for
the chase-based repairing algorithm to be successful.

Example 13. It is easy to verify that position p = 〈t1, Country〉
is a cause for the instance I and set Σ of FDs, shown in Fig-
ure 2a. Indeed, consider C = {〈t1, City〉, 〈t2, City〉, 〈t3, City〉,
〈t4, City〉, 〈t5, City〉, 〈t6, Country〉, 〈t3, CC〉, 〈t6, CC〉}. Then,
(I, C) is not a chase repair since the violation of ϕ1 in the first
three tuples cannot be resolved by the chase. However, (I, C ∪ p)
is a chase repair as illustrated in the previous example.

Further investigation is required as to establish the complexity
of the corresponding causality and responsibility problem, and to

provide a characterisation of causes similar to the ones given for
V -repairs.

With regard to the causality problem, one way forward is to
develop a provenance (lineage) model that is expressive enough
to record information about chase-like procedures such as the one
used by chase repairs. Note that in general, the order in which chase
steps may be applied may be important and thus the provenance
model must be capable of dealing with this. With such a provenance
model in place, one could envisage a characterisation similar to
the one given in Theorem 1. More specifically, causes and their
corresponding (curated) contingency sets must be closely related
to the obtained chase provenance. To our knowledge, no lineage
(or more generally provenance) model is in place yet that ticks all
these boxes 2.

Provenance models for repairing strategies may not only be
helpful in understanding causality. Indeed, we believe that they
must form an essential part of data quality systems. It is often said
that provenance is useful in the context of data quality, but so far
no formal framework is in place to validate this claim. Finding a
suitable provenance representation for chase repairs may be a first
step in this direction.

We are also convinced that causes, and their responsibility in
particular, may be helpful in designing better repairing algorithms.
Indeed, the most responsible causes should be the ones that are
repaired first.

5. Conclusions
This paper is a preliminary investigation on the interaction of cell-
based V -repairs and causality and the use of provenance informa-
tion to better understand causality in the context of data quality.
For more complex repair models, like chase repairs, we strongly be-
lieve that suitable provenance models need to be developed to make
similar connections between causality and provenance. In particu-
lar, provenance models that reflect the operational steps executed
to obtain a repair are required to better understand why and how
repairs are obtained, and how to debug the repairing process if the
suggested repair is not satisfactory to the user.

References
[1] Leopoldo E. Bertossi, Database Repairing and Consistent Query

Answering. Synthesis Lecture Series, Morgan & Claypool, 2011.
[2] Wenfei Fan and Floris Geerts, Foundations of Data Quality Manage-

ment. Synthesis Lecture Series, Morgan & Claypool, 2012.
[3] Ioana Ileana, Bogdan Cautis, Alin Deutsch, and Yannis Katsis,

Complete Yet Practical Search for Minimal Query Reformulations Under
Constraints. SIGMOD, pp 1015–1026, 2014.

[4] Solmaz Kolahi and Laks V.S. Lakshmanan, On Approximating
Optimum Repairs for Functional Dependency Violations. ICDT, pp. 53–
62, 2009.

[5] Alexandra Meliou, Wolfgang Gatterbauer, Joseph Y. Halpern,
Christoph Koch, Katherine F. Moore, and Dan Suciu, Causality in
Databases. IEEE Data Eng. Bull., 33(3), pp. 59–67, 2010.

[6] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu, Bringing
Provenance to its Full Potential using Causal Reasoning. TAPP, 2011.

[7] Babak Salimi and Leopoldo E. Bertossi, From Causes for Database
Queries to Repairs and Model-Based Diagnosis and Back. ICDT,
pp. 342–362, 2015.

2 The interaction between chase and provenance has been studied in [3], but
for the purpose of query reformulation optimization. This approach does
not seem applicable to our setting.

