
Decoupling Provenance Capture
and Analysis from Execution

Manolis Stamatogiannakis (@mstamat)
Paul Groth (@pgroth)

Herbert Bos

TaPP 2015
July 8-9, 2015, Edinburgh, Scotland

Stamatogiannakis, M., Groth, P., & Bos, H. (2014). Looking
inside the black-box: Capturing data provenance using
dynamic instrumentation. In Provenance and Annotation of
Data and Processes (pp. 155-167). Springer International
Publishing.

http://bit.ly/dtracker-demo
2

Capturing Provenance

Disclosed Provenance

+  Accuracy

+ High-level semantics

–  Intrusive

–  Manual Effort

Observed Provenance

–  False positives

–  Semantic Gap

+ Non-intrusive

+ Minimal manual effort

CPL (Macko ‘12)
Trio (Widom ‘09)

PrIME (Miles ‘09)

Taverna (Oinn ‘06)

VisTrails (Fraire ‘06)

ES3 (Frew ‘08)
Trec (Vahdat ‘98)

PASSv2 (Holland ‘08)

DTrace Tool (Gessiou ‘12)

3

What to capture?

Miles, Simon, Groth, Paul, Munroe, Steve and Moreau, Luc
(2011) PrIMe: a methodology for developing provenance-aware
applications. ACM Transactions on Software Engineering and
Methodology, 20, (3), 8:1-8:42.

4

Provenance is post hoc.

Aim:
Eliminate the need for developers to know
what provenance needs to be captured.

5

Re-execution

Common tactic in provenance:

•  DB: Reenactment queries (Glavic ‘14)

•  DistSys: Chimera (Foster ‘02), Hadoop
(Logothetis ‘13), DistTape (Zhao ‘12)

•  Workflows: Pegasus (Groth ‘09)

•  PL: Slicing (Perera ‘12)

•  OS: pTrace (Guo ‘11)

•  Desktop: Excel (Asuncion ‘11)

6

http://www.androidreran.com
7

Methodology

Selection

Provenance analysis

Instrumentation

Execution Capture

8

•  PANDA: an open-source Platform for Architecture-
Neutral Dynamic Analysis. (Dolan-Gavitt et al. ‘14)

•  Based on QEMU virtualization platform.
•  Logs self-contained execution traces.

–  An initial RAM snapshot.
–  Non-deterministic inputs.

Prototype Implementation (1/2)

PANDA

CPU RAM
Input

Interrupt

D
M

A

Initial RAM Snapshot

Non-
determinism

log

RAM

PANDA Execution Trace

9

Prototype Implementation (2/2)
•  Debian Linux guest.
•  Analysis plugins

–  Read-only access to the VM state.
–  Invoked per instr., memory access, context switch, etc.
–  Can be combined to implement complex functionality.
–  OSI Linux, PROV-Tracer, ProcStrMatch.

•  Provenance stored PROV/RDF triples, queried with SPARQL.

PANDA
Execution

Trace

PANDA

Triple
Store

Plugin A Plugin C

Plugin B

CPU

RAM

10

����

��������	
�

�������	�����	��
���������������

��������������

�������	������

������	�����

�������
����

��������

������

�	
��

���������	
�

����������	
�

���������	
�

OS Introspection

•  What processes are currently executing?
•  Which libraries are used?
•  What files are used?

•  Possible approaches:
– Execute code inside the guest-OS.
– Reproduce guest-OS semantics purely from the

hardware state (RAM/registers).

11

Introspecting Kernel Structures (1/2)

•  Kernel structure
members are known.

•  Their offsets depend on
compile-time
configuration.

•  Each linux vendor
supplies a few different
kernel configurations.

•  Rule of thumb: same
vendor/configuration/
version combo à same
offsets.

12

Introspecting Kernel Structures (2/2)

•  Offset profile created once for
each kernel “family”.

•  E.g. one profile for all Debian/
amd64/3.2.* kernels.

•  The profile is used by osi_linux
module to extract process info
from the execution trace.

Kernel
offset
profile

Live OS
Probe

Module

Process
Info

PANDA
Replay VM

osi_linux

PANDA
Trace

Monitored
OS

Pointer arithmetic:
struct task_struct t;

int off = &(t.memb) – &t;

printk(“off: %d”, off);

13

The PROV-Tracer Plugin

•  Registers for process creation/destruction
events.

•  Decodes executed system calls.
•  Keeps track of what files are used as input/

output by each process.
•  Emits provenance in an intermediate format

when a process terminates.

14

More Analysis Plugins

•  ProcStrMatch plugin.
– Which processes contained string S in their

memory?

•  Other possible types of analysis:
– Taint tracking
– Dynamic slicing

15

Execution Overhead (1/2)

•  QEMU incurs a 5x slowdown.
•  PANDA recording imposes an additional

1.1x – 1.2x slowdown.

Virtualization is the dominant overhead factor.

16

Execution Overhead (2/2)
•  QEMU is a suboptimal virtualization option.
•  ReVirt – User Mode Linux (Dunlap et al. ‘02)

– Slowdown: 1.08x rec. + 1.58x virt.

•  ReTrace – VMWare (Xu et al. ‘07)
– Slowdown: 1.05x-2.6x rec. + ??? virt.

Virtualization slowdown is considered acceptable.
Recording overhead is fairly low.

17

Storage Requirements

•  Storage requirements vary with the workload.
•  For PANDA (Dolan-Gavitt et al. ’14):

–  17-915 instructions per byte.
•  In practice: O(10MB/min) uncompressed.
•  Different approaches to reduce/manage

storage requirements.
– Compression, HD rotation, VM snapshots.

•  24/7 recording seems within limits of todays’
technology.

18

An Example (1)

<exe://pam-foreground-~3451> prov:endedAtTime 199090196 .!
<exe://getent~3451> a prov:Activity . !
<exe://getent~3451> rdf:type dt:getent .!
<exe://cut~3452> a prov:Activity . !
<exe://cut~3452> rdf:type dt:cut .!
<file:/etc/nsswitch.conf> a prov:Entity .!
<file:/etc/nsswitch.conf> rdfs:label "/etc/nsswitch.conf" .!
<file:/etc/nsswitch.conf> rdf:type dt:Unknown .!
<exe://getent~3451> prov:used <file:/etc/nsswitch.conf> .!
unused file:3477815296:getent~3451:/etc/passwd:r0:w0:f524288!
<exe://getent~3451> prov:startedAtTime 199090196 .!
<exe://getent~3451> prov:endedAtTime 200392668 .!
<file:FD0_3452> a prov:Entity .!
<file:FD0_3452> rdfs:label "FD0_3452" !

19

An Example (2

20

Example (3)

21

Example (4)

22

Conclusion

•  Decouple capture/analysis from execution
•  VMs provide a useful indirection mechanism
•  Future:

– More plugins
– Real world analysis (rrshare.org)
– Cloud analysis

•  Are traces/immutable logs primitive?

23

Source & Text

•  PROV-Tracer source:
–  https://github.com/m000/panda/tree/prov_tracer/
–  Plugins under qemu/panda_plugins.

•  Full text of paper:
–  http://workshops.inf.ed.ac.uk/tapp2015/TAPP15_I_3.pdf

24

