

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page.

Theory and Practice of Provenance 2015 July 8–9, 2015, Edinburgh, Scotland.

MITRE funded. ©2015 The MITRE Corporation. ALL RIGHTS RESERVED.

Approved for Public Release; Distribution Unlimited. Case Number 15-1439

Provenance Tipping Point

David Gammack

Marymount University

dgammack@marymount.edu

Adriane Chapman

The MITRE Corporation

achapman@mitre.org

Abstract

Capture is a known, difficult problem for provenance. Obtaining
from the systems and programs exactly what happened has been a
continuing struggle outside of database and workflow systems. The
provenance research community has created libraries to log prove-
nance, and has also embedded instances of capture agents within
operating systems, specific programs, etc. However, it is impossi-
ble to know if we are inserting capture agents at both the optimal
location and frequency in a given system for a high quality prove-
nance graph. In this work, we develop an initial agent based model
to simulate Activity and Entity interactions in a complex system of
software. Using this model, we can attempt to define some gener-
alized principles about type, frequency and distribution of prove-
nance capture agents given a new system.

Categories and Subject Descriptors • Information systems
~Data provenance • Software engineering ~Entity relationship
modeling

General Terms Management, Design.

Keywords provenance, agent based models, simulations

1. Introduction

The dream is for provenance to be a pervasive, always-on, every-
where information stream, in which data products can clearly be
associated with their input and the processes that manipulated them.
The capture of provenance information at every stage of data ma-
nipulation, from collection on ship through final publication, [4]
achieves this dream in that it is a large system with a number of
sub-systems and applications that are provenance-enabled. How-
ever, this is not the norm. Amongst many of the issues described in
[5], one of the acknowledged pain points is “not enough prove-
nance captured”. What level of involvement and provenance buy-
in must we achieve before we tip from an “academic endeavour” to
the vision of provenance everywhere?

When working with our government sponsors on their prove-
nance needs, the initial set of questions are invariably:

 How many capture agents do I need to get good coverage of
my system?

 Which systems should I create a capture agent for?
 What kind of capture agent should it be [manual, application,

etc.]?

The answer to these questions is, of course, “it really depends
on the set of applications within your system, the usage of the ap-
plications and how information usually flows through them,” in ad-
dition to the expected provenance uses. In order to truly answer this
question, an analysis of the system’s operating environment and the
intended usage for provenance is required. This work is intended to
provide a partial answer: “in general, you need around X capture
agents and should select the agents to optimize the following crite-
ria.” Hopefully, it will assist system owners with a better “back of
the envelope” calculation for expected number and type of capture
agents needed to cover the system of systems (as a function of most
capture for resource outlay).

In this work, we explore the “tipping point” phenomenon, i.e.,
the point where capturing provenance provides substantial utility
for users. We do it by running simulations that estimate the prove-
nance captured in a system of systems and varying numbers and
types of capture agents to find the tipping point after which the
provenance information is deemed “useful”. This initial work de-
velops the model and provides a first set of results to prove the con-
cept. The model can be later extended to provide a more in-depth
analysis of the factors involved in the tipping point and refined to
mimic a specific system of systems and possible capture agents.

Using NetLogo [19] we build an Agent Based Model (ABM) of
provenance capture of various types, and different assumptions of
likelihood of capture. We then exercise this model across thousands
of simulations. We begin with four basic options for capture: man-
ual, high-value coordination points, application-based, and do-
nothing. It is cheaper to select manual and do-nothing as the initial
approaches, but those techniques provide patchier provenance in-
formation. We simulate the provenance capture through a series of
systems made up of several applications that pass data around. The
model we develop in this work estimates the value of the prove-
nance, and uses the cost of implementation as a guide to the number
and types of capture agents to be deployed within a system of sys-
tems.

We begin by discussing related work in Section 2, in particular,
the provenance capture agents that exist today and how they map
to the types of capture agents in this work. Additionally, we provide
background on the agent based modelling system that we will be
using for our experimentation. In Section 3 we provide a brief mo-
tivation by looking at three different analytic cells who wished to
use provenance, and the variation and conundrums inherent in this
problem. In Section 4, we describe our model and present our im-
plementation and initial results in Section 5. Because this is initial
work, in Section 6 we describe extensions to the model and execu-
tion for later evaluation.

2. Related Work

2.1 Provenance

When provenance was limited to workflow systems or databases,
provenance capture was a known and well contained problem.
However, as we expanded outside of these systems to capture prov-
enance in any system, the capture agent problem became serious.
Creation of provenance capture libraries [8, 11] allows for the easy
interface of a provenance capture agent with a provenance store,
but the need to build and deploy a provenance capture agent still
remains. We break down types of capture agents into: manual, ap-
plication-based and coordination-point, as described in [6].

Manual: Many standards, such as [1], include provenance as
components of the required metadata; in many instances, much of
that information is populated by hand by a data curator. In general,
we believe that the manual approach should be used sparingly,
since it places a great burden on data users and cannot scale. Of
particular interest are hybrid approaches in which the application
itself is somewhat provenance-enabled, but the user makes the final
decision as to what is important and needs to be stored, such as [10].

Application-based: In some cases, an application is so heavily
used that it is beneficial to expend the resources to capture prove-
nance information from just that application. Examples include [3,
7, 12].

Coordination-points: In many systems of systems, there are
obvious “coordination points”. These are resources that many users
utilize, or that actively help order, transmit and manage data and
jobs. Examples that have provenance capture agents today include
MapReduce [15], UNIX kernel [13], GIT [14], ESB [2]. Prove-
nance can be captured at these points by monitoring data flows.

For now, we will ignore provenance-introspection work, such
as [18], in which capture agents are not needed and the provenance
is inferred from the data itself. We believe that this work is essential
for the completion of a provenance graph, but should be supple-
mental to capture agents until it fully matures.

The labour to provenance-enable is typically similar for an ap-
plication or a coordination point. However, the outputs of each
provenance capture agent are significantly different. Manual cap-
ture agents only produce provenance when the user is motivated;

1 MITRE policy requires us to anonymize the names of these projects.

application based capture agents produce provenance for that spe-
cific application, while coordination points can “see” the prove-
nance for many applications, jobs and data that pass through its
borders.

2.2 Agent Based Models

Agent-Based Models (ABM) are computational descriptions of real
world phenomena that we use to model and execute our simula-
tions. The two main components to an ABM are the environment
and its agents. The environment is the space in which phenomena
occur, in our case an organization of interconnected process or sys-
tems. Agents, in this case Prov-DM “Activities” inhabit the envi-
ronment. The designer of an ABM makes assumptions about the
interactions between individual agents and between the agents and
their environment. These interactions could be logical (if x then y),
probabilistic (there is an x% chance of y) or function-based (y =
f(x)). Once the interactions have been coded, simulations can be
run and conclusions drawn. For a full introduction on ABM, see [9,
16]. NetLogo [19] is an agent-based modelling tool that allows the
user to specify how agents (people/cells/objects) interact with each
other and their environment and to then examine how the system
evolves over time.

3. Project Characteristics

Table 1 highlights the real difficulty of convincing people to
convert to an automatic provenance capture process. Each of the
analytic groups is required to know what data they are using where,
and approached the MITRE provenance team for insight into col-
lecting provenance. For instance, A-Group1, which deals with avi-
ation analysis, is allowed to publish results that have been aggre-
gated and anonymized sufficiently; thus the analyst must under-
stand what data came from which system, and if enough sources
were included to anonymize the information. N-Group is required
to delete every instance of data, or any data derived from an exter-
nal partner should that partner withdraw. Finally, the Office of Fi-
nancial Research, within the US Department of the Treasury needs
data and algorithm discoverability and classic scientific “means and
methods” [17]. Each analytic group has a unique set of “favorite
tools”. None have a standard workflow, or required sequence of

Table 1: Characteristics of Analysis projects interested in tracking provenance

 # Exter-
nal Part-
ners

Input
Datasets

An-
alysts

Activi-
ties

Interme-
diate Enti-
ties

Top identi-
fied tools
used

Provenance Captured

N-Group 5-10 50 10-12 >1000 Unknown Post-
greSQL,
python

Manual – As New Files from exter-
nal partners arrive

Automatic – intermediate files get
created on the shared drive

Manual – relationships (what cre-
ated the intermediate files)

A-Group 10 ~400 ~100 100-1000 Unknown Oozie,
MapRe-
duce,
HDFS

Files are manually named with an
extension .x.y.z. X indicates a
schema change, Y an algorithm
change and Z upstream data change,
so that output files can be associated
with the right schema, algorithm and
input data.

Office of

Financial
Research

100s Unknown 100s >1000 Unknown R, Java,
Matlab

Individual’s notes

steps and tools; that is, if an individual analyst wishes to work in an
entirely non-standard language or data store, they may. Input and
intermediate data is freely shared and reused between analysts. In
other words, each project environment is unique in their tools, data
content, and information flow.

Interestingly, the N-group has made the most in-roads to prov-
enance capture. Of all of the analytic projects described, this is the
newest, and the individuals standing it up inquired about prove-
nance from the get-go. While no funds were set aside to actually
create provenance, they were willing to create a long-term strategy
to begin incorporating provenance. This included: 1) determining
the information required in the provenance for their needs; 2) forc-
ing analysts to manually populate this information; 3) use the re-
sulting “poor provenance store” and “save analyst time” argument
to identify resources and requirements for greater automation. This
“wait and see” attitude was partially due to funding and time con-
straints, but was also because at the initial onset, it was impossible
(without seeing how the analysts were using which tool) to give a
rough assessment of how many capture agents of which type were
needed. Hence, we wish to find a way to determine a “rough esti-
mate” of capture agents needed given the size of a particular sys-
tem.

4. The Model

As this is the initial attempt at using a model to estimate provenance
capture agent needs, we have begun as generically as possible. Be-
cause we ultimately want to determine whether the provenance is
useful, we must first define “Good Provenance”. There are several
choices for this, depending on the actual usage of the provenance,
including:
 100% of all provenance is captured
 80% of all possible provenance is captured
 At least 1 complete path between a source and sink exists

We have chosen to take the “80%” definition of “Good Prove-
nance” for this work since we feel that 100% is completely unreal-
istic. However, the model is adaptable, and can be run with any of
these options.

Additionally, the following components are also modelled: pro-
cesses, data flow and capture agents. These components are mod-
elled as follows:
 Processes accept data in, and they output data.

 Data is introduced at a “source” process, and is removed
from the system when it reaches a “sink” process after it
flows through the intermediate processes.

 Capture agents are of type: manual, application-based and
coordination-points.

For this set of simulations, a process must output data to at least
1 other process that it is connected to (which one it goes to is prob-
abilistic). After that, it is a degrading probabilistic function that the
data is also output to any of the other connected processes. For ex-
ample, a process could be: an ESB, a Hadoop system running
MapReduce, a database system, etc. Data flows from process to
process and can be split (a process takes in 1 piece of data and out-
puts to 2 different processes).The capture agents are randomly dis-
tributed over processes and have the following charateristics in this
simulation:

 Manual: Because we are particularly sceptical of user’s crea-
tion of provenance, we ran our simulations with the prove-
nance being recorded 10% of the time.

 Application-based agents will always capture the provenance
for the process they are attached to.

 Coordination-based agents will capture the provenance for
the process they are attached to and all of the processes that
are connected to them.

We have intentionally not defined our model to look like any
pre-configured system of systems, nor have we assigned the prov-
enance capture agents with any design as to what systems would
“normally” reside at a particular point in a system of systems. Our
experience, with just the three systems described above is that there
is no norm.

5. Implementation and Evaluation

The NetLogo environment describes a system as a set discrete areas
called patches. An agent in an ABM is an autonomous “individual”
that reacts to its environment. Each agent in this implementation
represents a process in our model. For simplicity sake in this model,
we place an agent representing a process from our model on each
patch in the environment. Additionally, an agent that interacts with
other “process” agents represents the data in our model. For our
initial simulation, a grid of agents, each agent is connected to the
agents on each side. Figure 1, we show a run with 25 processes (red

a) b)

Figure 1: NetLogo session mid-simulation: a) basic setup of tool; b) inspection of “data agent” 684 and the prove-

nance that was collected by the capture agents (sig-hist) vs what really happened to the data (sig-prov).

circles); triangles indicate a data flow is currently moving through
that process.

Now that we have a model, and a NetLogo implementation of
it, what does it tell us about the quality of the provenance, and how
many capture agents are actually needed?

A back of the envelope calculation shows that in the 25 process
model we run in the simulations, the minimum set of capture agents
required for full coverage is: 6 coordination points and 2 applica-
tion based. Figure 2 shows how the number and type of capture
agents impacts the usefulness of the provenance captured. Each bar
is labelled by the number of each type of capture agents spread
throughout the system. For instance, 13-7-2-3 means there are 13
“do nothing” (no provenance captured), 7 manual, 2 application-
based and 3 coordination-point-based. Of note, even though a total
of 8 capture agents can theoretically be deployed to capture 100%
of the provenance, because we cannot necessarily find or deploy
the provenance capture agents in the “best” place, on average only
80% of the provenance is captured with 9 capture agents. Interest-
ingly, although 16-0-0-9 has more “do nothing” nodes (16) than
many of the other runs, it isn’t until 7-6-6-6 (7 do nothing, 6 man-
ual, 6 application based and 6 coordination-points) that the utility
of the provenance is close. Thus, large increases in both manual and
application-based capture are needed to compensate for minor de-
creases in coordination-based capture.

6. Future Work

In this work, we outline the initial problem statement and generate
the first models for system interaction and provenance capture. One
potentially difficult aspect of modelling is deciding what is crucial
information and what can be neglected. In this initial work, we cre-
ated a simplistic model that can answer basic questions about prov-
enance capture agent numbers and types; we wish to expand the
model to include a fuller evaluation of:

1. Cost of provenance capture agent to determine what sort of
capture agents are produced (or not)

2. Determination of how signal propagates through system
3. System specification

a. Specific connections of applications within the system
b. Number of paths through the system
c. Size
d. Query only systems (do not pass signal through, but re-

turn answer to initiating system)
4. What is determined “complete” provenance.

Using these models, we hope to garner a better understanding
of how many and what type of provenance agents are likely to be

deployed in a system of a particular size. The models can be ana-
lysed via Latin Hypercube Sampling with Partial Rank correlations
to determine the best fit of capture agents given a particular cost
expenditure. We hope that this better understanding will assist in
conversations around, “I want to provenance enable my system of
systems, how painful is it likely to be?”

References

[1] "North American Profile of ISO19115:2003 - Geographic Information
- Metadata." NAP Metadata Working Group 2005.

[2] M. D. Allen, A. Chapman, B. Blaustein, and L. Seligman, "Provenance
Capture in the Wild," in IPAW, 2010.

[3] H. U. Asuncion, "Automated data provenance capture in spreadsheets,
with case studies," Future Generation Computer Systems, vol. 29, pp.
2169-2181, 2013.

[4] P. C. Brauer, A. Czerniak, and W. Hasselbring, "Start Smart and
Finish Wise: The Kiel Marine Science Provenance-Aware Data
Management Approach," Theory and Practice of Provenance, 2014.

[5] J. Cheney, S. Chong, N. Foster, M. I. Seltzer, and S. Vansummeren,
"Provenance: A Future History," in OOPSLA, 2009, pp. 957-964.

[6] G. B. Coe, R. C. Doty, M. D. Allen, and A. Chapman, "Provenance
Capture Disparities Highlighted through Datasets," Theory and
Practice of Provenance, 2014.

[7] H. Conover, R. Ramachandran, B. Beaumont, A. Kulkarni, M.
McEniry, K. Regner, and S. Graves, "Introducing Provenance Capture
into a Legacy Data System," IEEE Transactions on Geoscience and
Remote Sensing, vol. 51, 2013.

[8] P. Groth, S. Miles, and L. Moreau, "PReServ: Provenance Recording
for Services," UK OST e-Science second AHM, 2005.

[9] R. Laubenbacher, A. Jarrah, H. Mortveit, and S. Ravi, "Agent based
modeling, mathematical formalism for," Computational complexity,
pp. 88-104, 2012.

[10] B. Lerner and E. Boose, "RDataTracker: Collecting Provenance in an
Interactive Scripting Environment," Theory and Practice of
Provenance 2014.

[11] P. Macko and M. Seltzer, "A general-purpose provenance library,"
Theory and Practice of Provenance, 2012.

[12] P. Missier and Z. Chen, "Extracting PROV provenance traces from
Wikipedia history pages," EDBT, 2013.

[13] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
"Provenance-Aware Storage Systems," USENIX, pp. 43-56, 2006.

[14] T. D. Nies, S. Magliacane, R. Verborgh, S. Coppens, P. Groth, E.
Mannens, and R. V. d. Walle, "Git2PROV: Exposing Version Control
System Content as W3C PROV," Proceedings of the 12th
International Semantic Web Conference, 2013.

[15] H. Park, R. Ikeda, and J. Widom, "RAMP: A System for Capturing
and Tracing Provenance in MapReduce Workflows," VLDB, 2011.

[16] S. F. Railsback and V. Grimm, Agent-based and individual-based
modeling: A practical introduction. Princeton: Princeton University
Press, 2012.

[17] L. Seligman, S. Brady, B. Blaustein, P. Mutchler, A. Chapman, and C.
Worrell, "Data Provenance and Financial Systemic Risk," ICIQ, 2013.

[18] M. Stamatogiannakis, P. Groth, and H. Bos, "Looking Inside the
Black-Box: Capturing Data Provenance Using Dynamic
Instrumentation," in Provenance and Annotation of Data and
Processes, vol. 8628, 2015, pp. 155-167.

[19] U. Wilensky, "Netlogo," Center for Connected Learning and
Computer-Based Modeling, Northwestern University, Evanston, IL.,
vol. http://ccl.northwestern.edu/netlogo, 1999.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
%

 P
ro

ve
n

an
ce

 C
ap

tu
re

d

Capture Agents Deployed
(donothing-manual-application-coordination)

Figure 2: Simulation results altering the number and type of

provenance capture agents shown with decreasing numbers of

“do nothing” capture agents, and the result on % captured.

http://ccl.northwestern.edu/netlogo

