Don’t Just Go With the Flow:
Cautionary Tales of Fluid Flow Approximation

Alireza Pourranjbar!, Jane Hillston', and Luca Bortolussi??
1 LFCS, School of Informatics, University of Edinburgh, UK.
2 DMG, University of Trieste, Italy.
3 CNR/ISTI, Pisa, Italy.

Abstract. Fluid flow approximation allows efficient analysis of large
scale PEPA models. Given a model, this method outputs how the mean,
variance, and any other moment of the model’s stochastic behaviour
evolves as a function of time. We investigate whether the method’s re-
sults, i.e. moments of the behaviour, are sufficient to capture system’s
actual dynamics.

We ran a series of experiments on a client-server model. For some paramet-
rizations of the model, the model’s behaviour can accurately be charac-
terized by the fluid flow approximations of its moments. However, the
experiments show that for some other parametrizations, these moments
are not sufficient to capture the model’s behaviour, highlighting a pitfall
of relying only on the results of fluid flow analysis. The results suggest
that the sufficiency of the fluid flow method for the analysis of a model
depends on the model’s concrete parametrization. They also make it clear
that the existing criteria for deciding on the sufficiency of the fluid flow
method are not robust.

1 Introduction

One of the features of Performance Evaluation Process Algebra, or PEPA, is that
the concise set of formal primitives it provides is rich enough to be used to model
a wide range of systems [1-4]. In general, analysis of a PEPA model involves
deriving the model’s underlying Continuous Time Markov Chain (CTMC) and
applying Markovian analysis. When PEPA is used to model a large scale system,
i.e. a system with large populations of entities, the size of the underlying CTMC
becomes so large that Markovian analysis becomes expensive, time consuming
or even, due to the memory constraints, practically infeasible; a famous problem
referred to in the literature as the problem of state space explosion.

For the analysis of large scale PEPA models, methods have been developed
which provide us with approximate results. One such method is Monte Carlo
stochastic simulation. Here, given a large scale PEPA model, the modeller runs
a number of simulations over the underlying CTMC, sampling the state of the
system at the time ¢ of interest. The obtained set of samples are then used
to characterize the system performance metric’s approximate distribution. The
approximate distribution, found by applying the Monte Carlo method, tends to
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the exact one as the number of simulation runs tends to infinity. Depending on
the size of the system, running the stochastic simulations can be computationally
expensive. An alternative approach for the analysis of large scale models is fluid
flow approximation [5]. Using this method, one derives from a PEPA model, a
set of ordinary differential equations (ODEs) whose solutions approximate the
moments of the underlying CTMC to a given order. When the fluid flow method
is used to analyse a model, the modeller characterizes the system’s stochastic
behaviour by the moments of its associated CTMC.

Compared with Monte Carlo simulation, the fluid flow method is orders of
magnitude more efficient. However, it only captures the first few moments of the
underlying CTMC and, under some conditions, it can suffer from a significant
amount of error. These two observations raise the question of sufficiency of the
fluid flow method: having a large scale PEPA model, is it sufficient to use only
the fluid flow method for its analysis and are the results of this method enough
to characterize the system’s dynamics?

Our focus is on these two questions: we present the results of our experiments,
in which we investigated if the fluid flow method is a sufficient tool for the anal-
ysis of variants of a simple client-server system. These experiments showed that,
whilst for some models the results of fluid flow method can be used to accurately
characterize the system’s behaviour, for other models the results contain a large
amount of error or are even misleading about the system’s real executions.

The issue of sufficiency and related questions have previously been consid-
ered in the literature. In [6] Hayden and Bradley show that the state space of
each PEPA model can be partitioned into regions. The suitability of the fluid
flow method depends on the region that the system’s execution resides in; the
accuracy of the results of the fluid flow method decreases as the dynamics of the
system gets closer to the unsafe regions. In [7], Stefanek et al. suggest that for
periods of time when the system is performing in unsafe regions, one needs to
run a large number of stochastic simulations, use such trajectories to calculate
the moments (mean, variance, etc.) of the system’s behaviour, and use them in
place of the result of the fluid flow method. Our experiment results show the
same phenomenon with respect to the quality of the fluid flow approximation
as well as the importance of calculating accurate moments. Nevertheless, they
also show that some systems have a particular type of dynamics which cannot
be captured only by looking at the moments of its behaviour.

The work presented in [8] provides the basis of this paper. In [8], Bortolussi
et al. suggest that one requirement for applying the fluid flow method when
analysing a model, is for the all of the model’s transitions to have continuous
effect on model’s dynamics. It is argued in [8] that this requirement might not
be fully respected by all models. Such non-conforming models suggested in [8]
are: models where a small population of components are interacting with a large
population or models in which there is an interplay of slow and fast transitions.
For these models, the authors suggest that the appropriate analysis of the model
is performing hybrid stochastic simulation. In this analysis method, the continu-
ous and discrete transitions, both necessary for capturing the model’s dynamics,
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are taken into account. In [8] Bortolussi et al. looked at the necessary conditions
for sufficiency of the fluid flow method and provided some heuristics or criteria
for checking, by looking at a model, if the fluid flow approximation is sufficient
for its analysis. Our experiments showed that, given a PEPA model, more robust
criteria than the ones presented in [8] are needed for one to decide on sufficiency
of the fluid flow method.

Structure of this paper: Section 2 describes the model which we considered
in our experiments. Section 3 shows the results of analysis of our model, where
different methods have been applied. Section 4 describes the results of our ex-
periment with respect to the sufficiency of the fluid flow method. In Section 5
we present our concluding remarks about sufficiency results and elaborate on
future work.

2 The Model

To illustrate our argument throughout the paper we use variants of a simple
client-server system. The following is the PEPA model of this system, where n.
is the number of client and n, is the number of servers:
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Model 1: PEPA model of a simple client-server system.

A server’s initial state is S;q when it is waiting for a client to synchronize
with it on the action req*. A client’s initial state is Clientihinking- Bach client,
initially, performs an action think and when her thinking is finished, she under-
takes the shared action req synchronizing with an idle server. When req is done,
the client goes to her initial state and the server goes to the state Serverogging-
Here the server undertakes the action log and then becomes idle again. In PEPA
each action has a rate which is the parameter of an exponentially distributed ran-
dom variable that governs the delay associated with performing that action. For
instance, the rate of the action think is ry.

In this paper we assume that the objective of the analysis of this model is to
find the distribution of the number of clients who are in the state Client,equesting
at the equilibrium. These are the clients being queued, waiting to get the service.
We also want to know how the length of this queue changes as we reconfigure

4
req stands for “request”.
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the system: adding servers, considering more complicated behaviour for servers,
changing the service rate of the existing servers, or when the population of clients
increases.

Preliminaries

We use the notion of numerical vectors to build the underlying state space of
our client-server system [5]. Each state of this system is represented as a vector,
consisting of four state variables: (S;,S;, Ct, Cy), where in the current state, .S;
represents the number of idle servers, S; is the number of logging servers, Cy is
the number of thinking clients and finally C, is the number of clients who are
requesting. At any given time, (S;, 5}, Cy, C,.) € z+".

(Si+1,8, = 1,04 —1,Cp + 1)
(req,min(rs X (S4f + 1), rec X (Cr +1)))
(S;,91,C¢ +1,Cp — 1) (8;,5;,C¢ —1,Cp + 1)
(think,ry x (Cy m\x think,ry x (C))
(S;,51,Ct, Cr)

(tog,ry % (5 M (tog,ry X (51))

(8; = 1,8, +1,Cy, Cr) (req,min(rs x| (S;), re X (Cr)))  (Si +1,8 —1,C, Cr)

Y

(S; — 1,51 +1,C¢ +1,Cp — 1)

Fig. 1: Transitions into and out of a typical state (S;, Si, Ct, C;.).

Figure 1 shows a typical state of this system and how the system might
transition into or out of it. Each transition’s rate is a function of the rate of the
transition’s action and the population count which enables that transition. For
instance, in state (S;, S;, Ct, C,.) the rate of the action log is 1 x S;. According
to [9] when two components synchronize on an action, the rate of the shared
action is defined to be the minimum of the rates at which the synchronizing
components can perform that action. This notion can be lifted to populations
of components [10]. When components of two populations synchronize on an
action, the rate at which the action takes place is the minimum of the rates
which each of those populations offer for the shared action. In Fig. 1, when the
system is in state (S;, S, Cy, C,.), the server population can perform action req
with rate S; X rs and client population with the rate C;. x r.. Consequently, for
state (S;, 51, Ct, C..), the action req happens with the rate min(S; X s, C\. X 7).

Given concrete values for parameters of the client-server system (activity
rates and the initial populations), one can use the pattern shown in Fig. 1 to
build the complete state space D (D C Z+4) underlying the model. This state
space can be treated as a Continuous Time Markov Chain on the space D and
be used as the basis of performance evaluation [5]. An important aspect of a
dependable client-server system is to have short queues for the clients and serving



On Sufficiency of the Fluid Flow Approximation 5

them in a timely manner. Hence, in the analysis of this model, we want to find
the behaviour of state variable Ci..

3 Analysis of the Model

Typically, a client-server system involves a large population of clients commu-
nicating with a relatively smaller population of servers. Let us make a con-
crete client-server model based on Model 1 with the parameter values shown in
Table 1. Our concrete model describes a system with 10000 clients and 10 fast
servers. The rates are chosen in a way to make the length of the client waiting
queue be sensitive to the number of servers available in the system and enable us
to study an interesting behaviour exhibited by an extension of this model which
will be shown later in Sec. 4.2.

Table 1: Parameter values considered for PEPA Model 1.

Parameter|Value|Description
Ts 500 |On average, it takes 1/500th of an hour for a server to initiate
a communication link with a client.
T 120 |On average, it takes 1/120th of an hour for a server to process a request.
cr 2 |On average, it takes 1/2 of an hour for a client to initiate a
communication link with a server.
ct 0.06 |On average, it takes 1/0.06th of a hours for a client to think.
[ ng [ 10 [Total population of servers. ]
[ Ne [10000[T0tal population of clients. ]

In order to find C}.’s equilibrium distribution one can construct the model’s
underlying CTMC, use Markovian analysis to solve it and find C,’s ezact dis-
tribution. However, when the client population is large, even in the range of a
few thousands, the size of the CTMC becomes so large that solving it incurs a
large computational cost. Therefore, a more feasible way to find C).’s behaviour
is to use alternative approaches, such as the Monte Carlo method or the fluid
flow method [5], to find more efficiently approzimations to the exact solutions.

The Monte Carlo method was first applied to find C,’s distribution at the
equilibrium. We performed 20000 simulations over the model’s underlying CTMC,
collected C,’s value at t = 15000 (hours) and built a histogram, shown in Fig. 2.1.
One can use this histogram to derive information such as C,.’s mean (Eps.¢.[C])
and standard deviation (opr.0.[C,])?. Running 20000 simulations guarantees that
the mean self distance [11] of resulting histogram is bounded by log 2/ /20000;
an indication that the histogram is reasonably stable.

Another way to find C,’s behaviour, is to use the fluid flow method. For
a PEPA model, this method constructs a set of ordinary differential equations
(ODEs) which approximates how the mean, variance (and higher order mo-

ments) of state variables evolve over the course of time [6, 10]. Tools such as the
PEPA Eclipse Plugin [12] and the Grouped PEPA Analyser [13] can be used to

5 The subscript M.C. expresses that the measure is a result of applying the Monte
Carlo method.
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automatically derive a PEPA model’s underlying ODEs. Here in this paper, we
will use Chapman-Kolmogorov forward equations, related to the model’s under-
lying CTMC, to derive its corresponding ODEs [6] to shows how exactly ODEs
are constructed and what they describe about our model’s CTMC. Assuming
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(2.1) Distribution of C, (2.2) Evolution of C,’s mean and
at ¢ = 15000. standard deviation found by applying

the fluid flow method.

Fig. 2: C}’s behavior, found by applying the Monte Carlo method and fluid flow
method.

that the model’s underlying CTMC is completely defined by the pattern shown
in Fig. 1, one can write the Chapman-Kolmogorov forward equations which ex-
press, as a function of time, how the probability of being in any given state

v ={(S;,5,C;,Cs) €D C Z+" evolves. Let D(8:,5,,C,C,) (t) be the probability of
being in state (S;,5;, C;, Cy) at time ¢. Then we have:

d Pesi,50,01,00) () _ W
dt
+ (Ct + 1) X 1e X (s, s;,¢0+1,00—1) (F)
+ (St +1) X 11 X prs;—1,8,+1,¢4,0) (1)
+min( (Si +1) x 75 , (Cr +1) X 7e ) X prs;+1,8,-1,¢,-1,0,+1) (1)
—min( Si x rs ,Cr X 7¢ ) X D(s;,8,,0,0,) (1)
— S X 11 X D(s;,8,,0,0,) (F)

— Gy X 1t X Ps;,8,,C:,00) ()

This ODE system has one equation for each state v € D. Having a large
number of states means one cannot form and solve equations for all states of
the model’s CTMC. However, we reconfigure the equations and for each state
variable, find one equation describing how the mean of that state variable evolves.
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For state variable C.:

dE[C/](#) _ Cr X p(s,,5,,¢0,00 (1)
it > T (2)

(Si,S1,Ct, Cp)ED

=+ > Ci X Tt X p(sy,s5,00,00) (1)
(Si, Sy, Ct, Cr)eED

— Z min(Si X Ts, Cr X rc) X p(Sq,,SL,Ct,,Cr)(t)
(Si, S, Ct, Cp)ED

=+ r X E[C{](t) — E[min(S; X rs, Cr X 7)](1).

Note the term E[min(S; X rs,C X 7.)] in the above equations. In order to
close the system of ODEs and make them solvable, the approximation E[min(.S; x
rs, Cr X 1¢)] &~ min(E[S; x rg],E[C, X r.]) is applied. If we repeat this process
for Cy, S; and S; and apply the same approximation, we will have the following

equations®.

ARerICND _ ¢ B [C(0) + min(re x Brr[C)(0), 70 x Err[S](0) (3)
AEREION) _  in(re x B [C)(0). 7 x B [S1(0) + 70 x Br.r [G(0)
AEREISIO _  in(re x B [C)(0), 72 % B [S)(9) + 1 x Br [0
QBRSO _ | min(re x Err (G0, 70 % Err[S10)) — 1 x Brr[S0(0)

Due to the approximation step, the solutions Ep g [Cy], Er.r [Cr], EF.F.[S;] and

Er.r [S)] are approximations to E[Cy], E[C,], E[S;] and E[S;] which, could have
been derived by solving the model’s underlying CTMC. Here, in order to save
space, we did not include the ODEs related to variance of the state variables.
Figure 2.2 shows Ep r [C,.] found by the fluid flow analysis of our model. The dot-
ted lines above and below Ep g [C}]’s trajectory show Ep g [C)] + v/ Varg . [Cy]
and E[C,] — /Varg p.[C,] respectively. Note that the system reaches its equi-
librium within seven seconds. This means that ¢ = 15000 (hours), which was
the sampling time when running the Monte Carlo method, is a time when the
system has reached its equilibrium.

4 Sufficiency of Fluid Flow Analysis

When analysing a large scale PEPA model, the decision has to be made about
an appropriate analysis method. The fluid flow approximation is an efficient way
to analyse the model. However, its results might be insufficient to capture the
actual dynamics of the system. Moreover, the approximation:

E[min(g(z), h(z)) ~ min(E[g(2)], E[h(2)])]

5 The subscript F.F. expresses that the measure is the result of applying the fluid flow
approximation.
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introduces a certain amount of error in the fluid flow approximation’s results,
which is difficult to control. These issues raise the question of sufficiency of
the fluid flow method as an analysis tool when analysing a PEPA model. In
the following, we provide evidence that whilst the fluid flow approximation is a
sufficient method for analysis of some models, applying this method might not
be appropriate (and may even be misleading) for others.

4.1 The Client-Server System

Let us consider again Model 1. Considering the equation set (3), we know that
in the equilibrium:

dCy(t) _ dCo(t) _ dSi(t) _ d Sit)

dt dt dt a0 (4)

In the equilibrium, depending on the rates and populations of the clients and
servers, one of the following cases can happen:

— A: No contention case: min(rs X S;,r. x C;.) = r. X C,.. In this case, there is
enough service capacity to satisfy the requirements of the clients. Simplifying
the equations we have:

Cp = ot Co= - ne, Si=ne—Te-Tt p. S =T Tt_p. (5)

n Te
refre O retrt Ty Tt+Te Ty Tt

— B: Contention case: min(rgs x S;,r. x Cy.) = r5 x S;. In this case, clients
become blocked, because there is not enough service capacity to satisfy their
needs. In this case:

— _rs_ Tl —rs_ " R
Cr =mne rt Ts+Ty ns, Ct Tt Ts+Ty ns, Si

Ns, S = s _n (6)

R
rs+T retry S
For the parameter values of Table 1, the system settles in case A.

We wished to check whether it is sufficient to use only the fluid flow method
when analysing this model and how the sufficiency depends on the concrete
population levels of clients and servers. For this purpose, initially, we ran exper-
iments where we considered various populations for the servers (n varies from
three to 18) and for each population level, the analysis results derived by the
fluid flow method were compared against those derived from the Monte Carlo
method. The client population was kept constant (n. = 10000). Table 2 sum-
marises the results of these experiments. In Table 2, Eys ¢ [C)] and opr.c.[Cr]
are respectively, the mean value of C,. and C,’s standard deviation found by the
Monte Carlo method. Similarly Eg z [C).] and o ¢[C)] are C,’s mean and the as-
sociated standard deviation found by the fluid flow method. As the results of the
Monte Carlo method are closer to C.’s exact behaviour, we consider such results
as the basis of checking the validity of the results of the fluid flow method. Hence,
the error associated with Ep g [C;] (similarly for other measures) is defined as:

IE‘:MACA [Cr] — EFAFA [Cr}

100.
Exrc.[Cr) %

Err(Em.c.[Crl,Erp.[Cr]) =
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Table 2: Comparing results of the fluid flow method

and Monte Carlo simulation.
[ n« [ 3T 4] 5] 6 [7]8 ]9 J1wJ12]147]16 ] 18]
F.F.A.[5645]4193]2741[1290.3] 322 | 322 | 322 | 322 | 322 | 322 | 322 | 322
M.C. | 564441922740 1290 | 490 | 384 | 349 | 335 | 325 | 323 |322.6[322.3
Err.(%)| 0.01 [0.01 | 0.03 | 0.04 | 34 | 16 | 7.7 | 3.8 | 0.9 | 0.3 [0.18 | 0.12
F.F.A.[60.62] 70 |78.26]85.73 [17.66]17.66]17.66]17.66]17.66]17.66]17.66]17.66
M.C. |60.45/69.45|78.79] 86.5 |36.90|23.49|19.84|18.72|17.99|17.72|17.76|17.74
Err.(%)] 0.26 [ 0.25 [ 0.67 | 0.9 |52.3 |25.20[11.44] 5.6 | 1.8 | 0.3 | 0.5 | 0.4

E[C,]

U[CT]

Considering Err(Ep.c. [Cr], Ep r[Cr]) in Table 2, we observed that whilst
in some configurations of the client-server system, Er g [C,.] reasonably approx-
imates Eps.c.[Cy] (ns <6 or ng > 9, Err(Epr.c.[Cr], Err[Cy]) < 5%), in other
configurations, the error is relatively high (ns = 7 or ny = 8). Based on the notion
of switching points defined in [6], one explanation for this phenomenon is that
when the system’s dynamics keeps switching between case A and case B, then the
quality of the approximation E[min(rs x Si,r. xn.)] = min(E[rs x S;], E[r. x C,])
is poorer and the mean behaviour shown by the fluid flow method has more error
than the case when the system’s dynamics settles down in one mode. Looking
at the results of the Monte Carlo method, the relatively large value of the coeffi-
cient of variation (%) associated with Eps ¢ [C)] when ng =7 or ng = 8,
shows that C,’s distribution is relatively wide and hence the system’s dynamics
is likely to switch more often between the case of having a small number of
clients requesting (A) and the case of having a large number of them (B).

Figure 3.1 summarises another aspect of the fluid flow approximation for this
experiment. It shows that for this particular example, if ng > 6.6 + ¢ the system
converges to the behaviour associated with case A, i.e. C, = 322 and when
ng < 6.6 4+ € the system’s dynamics converges to case B. The values of Table 2
suggest that the maximum error associated with Ep g [C,] happens when n; is
chosen to be in the interval (6,8).

We extended the previous experiments to also consider different populations
of clients. Here, n. takes values in [1000,100000], ns in [1,50] and the rate
values were again chosen based on Table 1. For each pair of (ns,n.) we plot
Er.F[C,]. Figure 3.2 shows the result. As we can see, for each n., there is a ng
which defines the border between cases A and B for that n.. For instance, when
ne = 30000, if ngy > 21 then in the equilibrium, min(rs; x S;,r. X C;.) = r. x C,
(the system resides in case A) and if ny < 21 then in the equilibrium, the
system resides in case B. The same phenomenon happens when n, = 70000 and
ns = 40. The results in Table 2 and the fact that the mode change occurs in
the given configurations of this particular model, suggests that the accuracy of
C.,’s moments, found by the fluid flow method, increases, i.e. the error associated
with the moments decreases, if the system’s populations are changed in a way
that reduces the probability that the system settles near the switching points.
The experiments showed that in cases where the error associated with Ep g [C f],
op.r|Cy] (or higher moments) is small, the fluid flow method can be considered
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Fig.3: Er r [C:] at the equilibrium for various populations considered for clients
and servers.

as an efficient way to characterize C;.’s behaviour. In such cases, the modeller can
efficiently find accurate moments such as mean, variance, skewness and kurtosis
and then construct an approximate histogram, similar to the one that can be
derived by the application of the Monte Carlo method. The knowledge that C.’s
exact distribution is uni-modal (see the histogram of Fig. 2.1) makes it easier to
construct C).’s approximate histogram from the moments. Here, the fluid flow
approach is sufficient to form a reasonable characterization of C,’s behaviour.

4.2 An Extension of Client-Server System

In this subsection we consider Model 2 which is an extension of Model 1. The
structure of the Model 2 is the same as Model 1 except that in Model 2 each
server might occasionally break down and stop serving the clients:

Sidle d:(if (T@q, rs)~Slogging + (b?”k, Tb)-Sbroken
Slogging d:ef (log, rl)-Sidle

def .
SbToken - (f’L[IJ, Tf)-Sidle

Table 3 shows the chosen values for the new rates 7, r, and . The rest of the
parameters in Model 2 are as in Table 1. For illustration purposes, we consider a
system where the average delay associated with fixing a server is longer than the
average time it takes for a server to break down (i.e. ry < 7). This helps us to
study a system where there is a higher probability to see more servers breaking
down while one has already broken down and is being fixed.

The results of the analysis of Model 2, through the Monte Carlo technique
as well as the fluid flow method is depicted in Fig. 4. Figure 4.1 shows that this
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Table 3: Parameter values used for Model 2.

Parameter| Value Description
Ts 200 |Compared to Model 1, we have made the servers slower
in this model.
Th 0.0006 It takes 70 days, on average, for a server to break down.
T 0.0004 It takes 100 days, on average, for a server to get fixed.
T 0.05 [Compared to Model 1, we have made a clients’ thinking longer.

model, with the current parameter values, exhibits a multi-modal behaviour. The
first mode corresponds to the situation where there is no broken server (S, = 0).
The experiment showed that in 7100 trajectories out of 20000 simulation trajec-
tories, at t = 15000, the system was observed to be in this mode. When a server
breaks down, the system changes its mode. Due to the decrease in S;, the overall
service rate offered by the servers decreases and C).’s values cluster around a
higher level in the new mode.

Figures 4.2, 4.3, 4.4 and 4.5. show that until ¢ ~ 4000, E[C,.] remains constant,
E[S;] is decreasing and E[Sp] is increasing. This shows a phase of execution where
in spite of the fact that E[S;], experienced by the clients, is decreasing, still, the
overall service rate offered by the servers (rs x S;) is large enough to keep E[C, ] at
the same level. Interestingly, at ¢ ~ 4000, E[Sp] becomes large enough, i.e. E[S;]
becomes small enough, so that E[C,] starts to increase. This is the second phase
of the system’s execution. During this period of time, E[S;] keeps decreasing and
E[C,] increasing. Eventually, at ¢t = 10000 the system reaches its equilibrium.

In order to check the sufficiency of the fluid flow analysis for analysing this
model we ran a similar experiment to the one described in Section 4.1. The
population of clients was kept constant at n, = 10000 and different populations
of servers in the range [3,32] were considered. Table 4 summarizes the results.
Checking the sufficiency property for this model was more interesting as it is
capable of showing a multi-modal behaviour.

Table 4: comparison between results of the fluid flow
method and the Monte Carlo method. n., =
10000 and ng varies.
[ n« [ 3] 4[5[]6 [ 7] 89 J10[12]14]16] 18 ] 24 ] 32|
F.F.A. [7119]6159]5199]4239[3279] 23190 [1359] 399 | 243 | 243 | 243 | 243 | 243 | 243

. C. |7156|6177[5236(4295(|3387[ 2599 [1975[1460| 843 | 533 | 378 | 309 | 251 | 244
Err.(%)] 0.6 [ 0.2 0.7 | 1.3 [3.18[10.77|31.1|72.6| 71.1 [ 54.4 [ 35.7 | 21 3 0.1

F.F.A.[1240(1432[1601|1753|1894| 2025 |2148| 959 |15.42(15.42{15.42(15.42|15.42(15.42

.C. [1245[1420[1609]1758]1808| 1792 [1656|1456| 1048 | 713 | 470 | 314 | 76 [17.80
Err.(%)[0.42]0.79[0.52[0.25| 4.7 [ 13 | 29 [34.1] 98 97 96 95 79 13

E[Cy]
=
o

o[Cr]
=
Q

Considering the error Err(Eps.c [Cr], Er g [Cr]), one can see the same trend
as in the results of Model 1: as we gradually increase the number of servers, the
error between the results of the fluid flow analysis and the Monte Carlo method
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Fig. 4: State variables’ behaviour in Model 2 when n., = 10000 and ns = 10.

with respect to E[C,] first rises and then decreases. In order to explain this trend,
we use Fig. 5, which shows the results of Monte Carlo simulations for each case.

We observed that again the quality of the approximation E[min(rs X S;, re X
C,)] ~ min(rs x E[S;],r. x E[C,]) plays an important role in the accuracy of
the results of the fluid flow method. In a model where n; is relatively small (e.g.
ns = 4), despite the fact that system’s dynamics has different modes, still, in
any of those modes, the above approximation is exact:

E[min(rs x S;, 7. x C;)] &~ min(rs x E[S;],7. x E[C,]) =75 X S;.

As ng increases, we see models whose dynamics contain mode(s) where min(rs x
E[S;], rexE[C}]) = rsx S; and mode(s) where min(rs XE[S;], 7. XE[C}]) = rex C..
For example, when ns = 6 or ngy = 10, the system keeps switching between a
series of modes where there are not enough servers to keep C). small and the
mode where there are enough servers to satisfy client requests. In models with
such a behaviour, the quality of approximation is poorer and the error associated
with the results of the fluid flow method increases. For relatively larger values of
ns (e.g. ns > 12), it becomes more probable that when a server fails, the overall



On Sufficiency of the Fluid Flow Approximation 13

service rate offered by other active servers remain large enough to satisfy client
requesting rate. This means, in spite of having different modes of behaviour,
less switches take place in the dynamics of the system with respect to minimum
approximation (see Fig. 5.4) and hence, the approximation is more accurate.
Consequently, as we see in Table 4, the error associated with Ep z [C).] decreases
as we consider relatively larger populations of servers.

4000 4000 000 20000
1
\\\\‘\\\\‘\\\\‘\\ \\\\‘\\\\‘\\\\‘\\
3000 6000 9000 3000 6000 9000 3000 6000 9000 3000 6000 9000
Cy’s bins C,’s bins Cy’s bins Cyr’s bins
(5.1) ns =4 (5.2) ns =6 (5.3) ns =10 (5.4) ns =18

Fig. 5: the histogram of E[C,] for some of the cases, n. = 10000 and n, varies.

Another aspect of checking the sufficiency of the fluid flow method is to take
into account the fact that this method is finding only moments (mean, variance,
etc.) of the state variables. We checked, for the client-server system of Model
2, if these moments alone are providing enough information about the system’s
actual execution.

Figure 6.1 describes the solution of the ODEs for C)., when ns, = 18, n. =
10000. Figure 6.2 shows one trajectory of C,. considering the same populations. In
this particular trajectory, in a large portion of the time, C,’s value fluctuates in
close proximity of Ep z [C..]. In this part of the simulation Ep  [C).] and op ¢[C;]
can accurately represent C).’s evolution. Figure 6.2 also shows that there can
also be some spikes which occur due to a combination of contention and one
(or more) servers being broken. In this period of time, Ep . [C}] and op p[C,]
cannot represent C,’s behaviour. One might logically argue that these spikes
have happened only in this particular trajectory and can be ignored. However,
Fig. 5.4 indicates that in 800 out of 20000 simulation runs, we observe C, >
Er.F [Cr]+20 x op p[F]. Therefore, having occasional long queues of the clients,
requesting the service, is one of the intrinsic characteristics of the system with
the assumed populations. We conclude that characterising the dynamics of the
system by only the results of the fluid flow method, i.e. E[C,] and o ¢[C}], does
not account for such occasional spikes. These spikes can be especially important
from the performance modelling point of view, for instance when the designers
of a client-server system are going through the capacity planning phase.

The client-server systems where C, has a multi-modal distribution, show
another sufficiency issue with respect to the fluid flow method. In such cases,
C,’s mean and standard deviation are too crude to reflect C,.’s actual behaviour.
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Fig. 6: Comparing an actual trajectory of C, with Ep g [C,].

For instance, consider the model where n, = 10000, ns = 9. Figure 6.3 shows C.’s
distribution. Table 4 shows that for this case Ep g [C)] = 1359 and op r[C,] =
2148. By looking at the histogram, we observed that only in 5500 out of 20000
simulations,

Err[Cr] —0.25 x orp[Cr] < Cr < Ep r[Cr] +0.25 X or.F[Cr].

In other words, in contrast with what one might expect from a mean measure,
Er F [C,] is showing a value that the system’s dynamics is more likely to be away
from.

Figure 6 shows that in the analysis of a model, any given approach which only
outputs the moments of beaviour, might not be sufficient to analyse that model.
For instance, running stochastic simulations and only extracting the average,
which is a common analysis method, might keep hidden some of the important
aspects of the system’s execution.

14000 —

12000 —
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8000 —f

6000 —f

Frequency

4000 —f

2000 —

Cy’s bins

Fig. 7: C,’s histogram when r; = 0.01, r., = 200.
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As we have seen, some ranges of values for ng and n. give rise to instantiations
of Model 2 for which the results of fluid flow analysis alone, are too abstract to
characterize the system’s dynamics. However, experiments showed that for the
same model but with different parameters, the multi-modality disappears, and
for these instantiations of Model 2, Ep . [C;] and op r[C)] can accurately ex-
hibit the system’s executions. For instance, if we consider larger populations for
the servers (ns > 32), even when one or more servers are broken, the remain-
ing service capacity is large enough to prevent a sudden increase in C,. Or as
another example, consider ny = 14,n, = 10000 (the condition as seen in Fig.
5.1, but decrease the thinking rate from r; = 0.05 to r; = 0.01 and make clients
communication with servers faster: increase r. = 2 up to r. = 200. Effectively,
each client now spends more time thnking independently and once she enters
the request queue, because she communicates with a servers more efficiently, she
leaves the queue more quickly. This stops high contention in the system (see
Fig. 7) and consequently server’s breakdowns will not have any effect on C,..

5 Conclusion and Future Work

Our experiments led us to the following conclusions:

1. In performance evaluation studies, there are models which exhibit multi-
modal behaviour. For such systems, using analysis approaches which only
capture the behaviour’s moments might not be sufficient to reveal the actual
dynamics of the system. This insufficiency is not exclusively related to the
fluid flow method. Even with stochastic simulations, it might not be sufficient
to look only at the average of the simulation trajectories — averaging might

hide some aspects of the system’s performance.
2. It was shown in [6] that the accuracy of the fluid flow method depends on
the quality of the approximation:

E[min(g(z), h(z)) ~ min(E[g(z)], E[h(2)])].

The results of the fluid flow approximation are more accurate when it is less

probable for the system to be in regions of the state space where the quality
of this approximation is poor. In the context of our experiments we showed
that this accuracy criterion can also be applied for multi-modal systems: if
the dynamics of the system does not enter the unsafe regions, even though
the system observes different modes, the moments of the behaviour can still
be accurately calculated by applying the fluid flow method.

3. For a PEPA model which is capable of exhibiting multi-modal behaviour,
the sufficiency of the fluid flow method depends on the concrete values one
considers for the model’s parameters. Moreover, the multi-modal behaviour
is very sensitive to parameter values and model structure.

4. In a PEPA model, having a small population of components interacting with
a larger one, or having a combination of slow and fast transitions, does not
necessarily imply the insufficiency of the fluid flow method for the analysis
of that model. However, for models in these classes [8], the modeller must
run a rigorous validation of the results of the fluid flow method.
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5.1 Future work

Our experiments showed some models for which the fluid flow method was con-
cluded to be insufficient. However, such conclusions could only be made after
running numerous computationally expensive stochastic simulations. Our future
work will focus on finding algorithms or analytical results which, for a given
PEPA model, can decide whether the fluid flow method is a sufficient analy-
sis tool. Specifically we aim to build a method which can statically analyse a
completely parametrized PEPA model and reveal if the model has the potential
to show multi-modal behaviour. This involves improvements on the sufficiency
criteria offered in [8].
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