
Performance Modelling of
Magnetohydrodynamics Codes

R. F. Bird, S. A. Wright, D. A. Beckingsale and S. A. Jarvis

Performance Computing and Visualisation
Department of Computer Science

University of Warwick, UK
bob@dcs.warwick.ac.uk

Abstract. Performance modelling is an important tool utilised by the
High Performance Computing industry to accurately predict the run-
time of science applications on a variety of different architectures. Per-
formance models aid in procurement decisions and help to highlight areas
for possible code optimisations. This paper presents a performance model
for a magnetohydrodynamics physics application, Lare. We demonstrate
that this model is capable of accurately predicting the run-time of Lare
across multiple platforms with an accuracy of 90% (for both strong and
weak scaled problems). We then utilise this model to evaluate the perfor-
mance of future optimisations. The model is generated using SST/macro,
the machine level component of the Structural Simulation Toolkit (SST)
from Sandia National Laboratories, and is validated on both a com-
modity cluster located at the University of Warwick and a large scale
capability resource located at Lawrence Livermore National Laboratory.

1 Introduction

Increasing compute performance and maximising supercomputer utilisation has
long been a major goal within the High Performance Computing (HPC) indus-
try. Users of these supercomputers are building increasingly more complex and
computationally intensive applications, furthering research in a wide variety of
science and engineering areas.

In order to meet the demands of the industry, HPC centres are starting to
move away from traditional architectures and towards new technologies. One
such technology is that of many-core, utilising large numbers of processor units,
possibly as part of a heterogeneous architecture. The highly parallel SIMD nature
of many-core units, such as GPUs and Intel MIC, allows faster processing of large
amounts of data, and can offer performance gains for scientific applications [1–3].

With this increase in technical complexity, it is important to ensure these
resources are used effectively. By being able to accurately predict the run-time
of a code for a given architecture, we are not only able to make more efficient use
of the hardware, but we can also rapidly compare code performance on a variety
of different architectures. Furthermore, we are also able to extrapolate results
past existing core counts, making predictions of code performance at scale.

In order to predict run-time performance, we need to capture the run-time
behaviour of the application and the performance characteristics of the target
system. We can then infer information from this data. This process is known
as performance modelling. In this paper we describe the development of a per-
formance model for the 2-dimensional variant of Lare, a representative plasma
physics application. Lare is a Lagrangian remap code, used for solving magneto-
hydrodynamics (MHD) equations [4], and is being developed at the University
of Warwick.

Specifically we make the following contributions:

– We develop a performance model for Lare. This is the first known predictive
performance model for Lare and allows for the prediction of run-time on a
variety of current and future architectures based on a minimal number of
input parameters. It has been developed such that any future changes or
optimisations in the code base can be readily incorporated into the model;

– We validate this performance model on two HPC systems: a commodity
cluster located at the University of Warwick and a 260 TFLOP/s capability
resource located at Lawrence Livermore National Laboratory (LLNL). We
demonstrate an accuracy of greater than 90% for both weak and strong
scaled problems;

– Finally, we use our model to provide an evaluation of possible optimisations
to Lare. Specifically we perform an investigation into the potential improve-
ments that can be gained from a move towards an Arbitrary Lagrangian-
Eulerian (ALE) code in which a more expensive remap step can be applied
less frequently.

The remainder of the paper is organised as follows: Section 2 provides a summary
of related work; Section 3 provides a background to performance modelling and
the operation of Lare; Section 4 discusses the approach taken in developing the
performance model; Section 5 provides a validation of the accuracy of the model;
Section 6 uses the model to detail potential gains from future optimisations.
Finally Section 7 concludes this paper.

2 Related Work

Performance models are a vital tool used by the HPC industry in order to pre-
dict the run-times of an application. These predictions can then be used to
aid procurement decisions, identify optimisation opportunities, or to predict the
behaviour of an application running on a hypothetical future architecture at
scale [5].

Hammond et al. [6] show how performance modelling can be used to provide
a comparison between two different systems, and use this comparison to aid pro-
curement decisions. They show that the ability to make predictions at scale can

be more valuable than the information obtained from small scale benchmarks.
In [7], Herdman et al. use a performance model of an industry strength hydrody-
namics benchmark to provide guidance for the procurement of future systems.
The authors use their performance model to generate a range of predicted values
for comparison, spanning multiple architectures and compiler configurations.

In addition to allowing us to assess current architectures, performance mod-
elling also plays a vital role in enabling us to look at the performance of applica-
tions on future architectures at scale. Pennycook et al. [8] show how performance
modelling can be used to provide an insight into how applications will perform
on a variety on architectures, highlighting the potential benefits of using many-
core architectures. Finally, in [9] it is shown that performance modelling can be
applied to emerging distributed memory heterogeneous systems to provide an
analysis of the performance characteristics and to accurately predict run-times
for an application [10].

In [11] a model of parallel computation, LogGP, based on the LogP [12]
model, is introduced. It extends the predictive performance of LogP by including
the ability to accurately predict communication performance for small messages.
This in turn forms the basis on which plug-and-play models can be built, as
shown in [13]. The authors show that a model can be built that is able to
accurately predict the run-time of an application on a variety of architectures,
whilst taking a minimal set of input parameters. This approach has successfully
been used by others, including Davis et al. [14] and Sundaram-Stukel et al. [15],
and is the basis of the approach taken in this paper.

The previous methods of developing an analytical performance model have
been purely mathematically based, but as levels of concurrency and message
passing continue to climb this is becoming increasingly difficult to do accu-
rately. By instead simulating the topologies of machines, and message passing
behaviour of applications, we can hope to gain increased accuracy. This simula-
tion of hardware can be done using an abstraction of the machine, using both
virtual processors and interconnect. By providing values for the specifications of
the processors and the interconnect, we can then reproduce the communications
performed by the application. By having this closeness between software and
hardware it allows for greater performance optimisation of both, as seen in the
co-design approach that is being used to move us towards exascale [16–18].

One such tool that facilitates this machine level simulation is SST/macro,
one component of Structural Simulation Toolkit [17] from Sandia National Lab-
oratories. SST/macro allows for simulation style models to represent both the
control flow of an application, and the message passing behaviour. In doing this
it can fully consider such factors as contention and network topology, areas which
had previously introduced inaccuracy into analytical models. In order to make
use of these advantages, SST/macro has been used to construct the model used
in this paper.

3 Background

3.1 Lare

To solve MHD equations, Lare uses an approach based on control volume av-
eraging using a staggered grid. This approach is extended to include complex
components such as magnetic fields and shock forces. Lare is run on a fixed size
grid for a set number of iterations, an outline of which is shown in Figure 1. The
grid used in Lare is 2-dimensional with its width (Nx) and height (Ny) set at
run time. This grid is then decomposed in two dimensions (Px × Py) such that
each processor receives nx× ny cells, where nx = Nx/Px and ny = Ny/Py.

1 DO
2 . . .
3 CALL l a g r a n g i a n s t e p
4 CALL eu le r ian remap (i)
5 . . .
6 ENDDO

Fig. 1: The main compute loop of Lare, operated over for a fixed number of iterations.

The main area of computation in Lare is represented by two key steps, each
executed once per iteration: the Lagrangian step; and the Lagrangian remap. The
Lagrangian step contains the majority of the computationally intensive physics,
representing a significant proportion of the run-time. During this step the grid on
which the calculations are performed gets distorted. The gridding scheme used
in Lare cannot tolerate large distortions of the computational domain without
frequent remapping operations. And thus, some work must be done to correct the
grid before computation can continue. The Lagrangian remap reforms the grid
to its proper coordinates, and involves a significant amount of computation and
a series of near-neighbour exchanges are required, which ensures neighbouring
cells hold the appropriate values.

3.2 Performance Modelling

The general run-time of a parallel application can be described by Equation 1,
which states that the total run-time is the combined total of the compute and
communication times.

Ttotal = Tcompute + Tcomms (1)

When developing a performance model it is usual to start with the simplistic
case of a serial run, as it contains no communications. In doing this you are able
to simplify Equation 1, to that shown in Equation 2.

Ttotal = Tcompute (2)

This compute term can then be broken down further, to describe the run-time at
a function level. This is shown in Equation 3, where wg is refered to as the ‘grind
time’, and both nx and ny represent the decomposed grid size in the relevant
direction.

Tcompute =
∑

wg × (nx× ny) (3)

The term grind time is used to describe the per-cell cost of a function. To obtain
these values the code can be instrumented with timers. This can either be done
using a profiler such as gprof or scalasca, alternatively the instrumentation can
be done manually. Once these grind times have been found they can be put back
into Equation 3 to calculate the total compute time.

4 Developing a Performance Model

In order to fully understand the run-time characteristics of Lare, the code was
profiled for both serial and parallel runs. This quantifies the time spent in each
subroutine, allowing us to focus our efforts when building our simulation.

In order to construct a model using SST/macro, a skeleton of the code has
to be constructed that includes the main areas of compute and communication.
As the generation of a comprehensive skeleton application can be a non-trivial
process, a small tool was written to facilitate this. The tool performs static
analysis on the Fortran source code, and transforms this information into a
SST/macro skeleton model. The tool parses the Fortran source code line by line,
splitting the line into tokens based on whitespace. These tokens are then matched
against an in-built list of keywords, identifying key areas such as subroutine
declarations and invocations. Once a keyword is matched, the line is processed.
Subroutine declarations are parsed and replicated in the skeleton code. These
subroutines are then populated by any function calls made within them. One of
the key benefits of the tool is that it identifies MPI communications and is able
to flag these to the user and input them into the skeleton. The tool is able to
auto-complete much of the information about the MPI call, leaving only the size
of the communication buffer to be provided by the user.

In addition to the skeleton, SST/macro requires machine specific details to
be specified, such as: topology, network bandwidth and on-node and off-node
latencies. These values are obtained using a series of micro-benchmarks.

In order to accurately populate the skeleton application, the main contribu-
tors of run-time need to be identified. By profiling Lare and combining this with
our existing understanding, it is clear that the two most significant contributors
are the Lagrangian step and the Lagrangian remap as previously discussed.

By combining these two steps, we can develop an equation that accurately
and concisely summarises the total run-time of Lare as shown in Equation 4.

Ttotal =

iterations∑
i=0

(tlagrangian step + tremap) (4)

In order to make use of this equation, an incremental approach to building a
model was taken, starting with the construction of a serial model.

4.1 Serial Model

For a serial run of Lare, there is no inter-process communication – the run-time
is singularly representative of the compute, allowing us to apply Equation 2.

This equation can be decomposed further. The term Tcompute can further
be broken up into its subcomponents, as shown in Equation 3. A table of the
relevant grind times for Lare can be found in Table 1.

File Name Subroutine wg Term

diagnostics.f90 energy account wenergy account

lagran.f90 lagrangian step wlagrangian step

lagran.f90 predictor corrector step wpredictor corrector

xremap.f90 remap x wremap x

yremap.f90 remap y wremap y

zremap.f90 remap z wremap z

remap.f90 eulerian remap wremap remainder

diagnostics.f90 set dt wset dt

Table 1: A table depicting the grind times used in modeling Lare, along with their
relative location in the source code.

We are able to derive values of the relevant wg times by running a version of
Lare instrumented with timers. Using these values we are able to develop a model
that can predict serial run-time to an exceptionally high level of accuracy, using
Equation 4.

4.2 Parallel Model

Once a serial model was developed, a parallel model could then be considered
in the form shown in Equation 1.

The communication in Lare is dominated by two MPI functions, send-receives
and all reduces. The send-receive functions are used to swap neighbour cells,
whilst the all reduces collate data. By summing the times taken by these oper-
ations, we can represent the communications time as:

Tcomms =
∑

tSendrecv +
∑

tAllreduce (5)

During the point-to-point communications, the amount of data sent is dependent
on the grid size set at compile time. The grid undergoes a coarse decomposition
in two dimensions, and is distributed among the processors. This method of de-
composition is performed with the aim of minimising the surface-area-to-volume
ratio, which in turn increases the ratio of computation to communication. This
decomposition strategy is replicated in the model, with SST/macro simulating
an exact copy of the communications. Once all the required terms have been
identified, they can be incorporated into the model. In order for SST/macro to
accurately simulate communications, it requires values for the latency and band-
width of the target system. These values can be found experimentally with a set
of micro-benchmarks that are distributed with SST/macro.

Figure 2 shows elements of both the model and original Lare source code
for two methods, dm x bcs and remap x. It compares the original source to the
equivalent representation in the model. In (a) we see the dm x bcs subroutine
that features an MPI Sendrecv. In (b) we can see this has been translated to
the equivalent SST/macro MPI call, to be dealt with by the simulated network.
Similarly (c) shows an area of compute performed by the original source, this is
then replaced by a wg based calculation in (d).

5 Validation

In order to validate our model, we compare application run times with simulation
times for a variety of grid sizes and processor counts on 2 different machines.

5.1 Machines

The two machines used in the validation of the model were the resident super-
computer at the University of Warwick, Minerva, and a large scale capability
resource, Sierra, located at LLNL. The specification of the two machines used in
this study are summarised in Table 2.

Sierra Minerva

Processor Intel Xeon 5660 Intel Xeon 5650
Processor Speed 2.8 GHz 2.66 GHz
Cores/Node 12 12
Nodes 1849 258
Memory/Node 24 GB 24 GB
Interconnect QLogic TrueScale 4X QDR InfiniBand
Compilers Intel 12.0 Intel 12.0
MPI MVAPICH2 1.7 OpenMPI 1.4.3

Table 2: Details of the experimental machines used.

(a) Original Fortran dm x bcs Subroutine

1 SUBROUTINE dm x bcs
2 . . .
3 CALL MPI SENDRECV(dm(nx−1, 0 : ny+1) , ny+2, mpireal , &
4 proc x max , tag , dm(−1 , 0 : ny+1) , ny+2, mpireal , &
5 proc x min , tag , comm, status , e r r code)
6 . . .
7 END SUBROUTINE dm x bcs

(b) Model dm x bcs Subroutine

1 void dm x bcs (int rank) {
2 . . .
3 mpi−>sendrecv (ny + 2 , sstmac : : sw : : mpitype : : mpi rea l , \
4 proc x max , tag , ny + 2 , sstmac : : sw : : mpitype : : mpi rea l , \
5 proc x min , tag , world () , s t a t) ;
6 . . .
7 }

(c) Original Fortran remap x Subroutine

1 SUBROUTINE remap x ! remap onto o r i g i n a l Eu ler ian g r i d
2 . . .
3 DO i y = −1, ny+2
4 iym = iy − 1
5 DO i x = −1, nx+2
6 ixm = ix − 1
7 . . .
8 ENDDO
9

10 ENDDO
11 . . .
12 END SUBROUTINE remap x

(d) Model remap x Subroutine

1 void remap x (int rank) {
2 . . .
3 sstmac : : timestamp t (remap x w ∗ nx ∗ ny) ;
4 compute (t) ;
5 . . .
6 }

Fig. 2: Code snippet comparing original source code with its representation in the
model, including a wg based compute call and a SST/macro MPI call.

5.2 Weak Scaled Problem

For a weak scaled problem, the grid size is increased with the processor count
with the aim of keeping the compute per processor fixed. This is the approach
taken for solving increasingly difficult problems in a fixed amount of time. As the
processor count increases, more communication between grid cells is required,
leading to a general increase in communication time. As the compute per pro-
cessor remains the same throughout, we expect that our wg will not change,
allowing us to be confident of the predictions for compute time. Table 3 presents
a comparison of the experimental run-times against predicated run-times for a
weak scaled problem with 3,000,000 cells per core, running for 100 iterations.

(a) Minerva

Nodes Grid Size Time (s) Prediction (s) Error (%)

1 6000 543.10 527.03 -3.05
4 12000 554.90 528.57 -4.98
9 18000 560.63 541.55 -3.52

16 24000 569.41 549.06 -3.71
21 30000 570.08 551.14 -3.44
36 36000 578.24 558.15 -3.60

(b) Sierra

Nodes Grid Size Time (s) Prediction (s) Error (%)

1 6000 480.70 465.46 -3.29
4 12000 485.26 466.17 -4.10
9 18000 493.59 466.83 -5.73

16 24000 498.32 476.30 -4.62
21 30000 499.07 478.43 -4.31
36 36000 499.01 480.49 -3.85
49 42000 499.47 481.98 -3.63
64 48000 499.15 483.68 -3.20
81 54000 499.31 487.22 -2.48

100 60000 499.58 488.59 -2.25
121 66000 500.00 490.12 -2.02
144 72000 500.57 491.54 -1.84
169 78000 500.29 492.91 -1.50
196 84000 500.27 495.44 -0.98
225 90000 500.85 496.88 -0.80
256 96000 500.29 499.44 -0.17

Table 3: A table comparing the run-times to simulation times of Lare for Minerva and
Sierra.

From the table we can see that the model was able to accurately predict the
run-time to an accuracy of greater than 90%. The predicated runtime being
consistently slightly lower than the experimental time can be attributed to a

small percentage of the run time behaviour not being incorporated in the pre-
diction, such as the set up costs, which are not captured by the model.

5.3 Strong Scaled Problem

Strong scaling describes the process of solving a fixed problem size with an
increasing number of processors. As the processor count increases the aim is
to decrease the run-time. A comparison between experimental run-time and
predicted run-time is shown in Table 4 for a 16,800 × 16,800 strong scaled
problem, running for 100 iterations. This problem size was chosen to give a
sufficiently long run time, but still fit in the available memory.

(a) Minerva

Nodes Time (s) Prediction (s) Error (%)

8 518.01 532.85 2.78
12 348.16 364.61 4.51
16 262.74 277.77 5.41
24 172.01 189.51 9.24
32 128.67 133.48 3.61

(b) Sierra

Nodes Time (s) Prediction (s) Error (%)

16 251.06 236.00 -6.38
32 119.60 121.78 1.79
64 61.02 64.16 4.90

128 33.38 35.55 6.12

Table 4: A table comparing the run-times to simulation times of Lare for Minerva and
Sierra fora strong scaled problem.

The performance model was able predict the run-time to an accuracy of greater
than 90% for a range of core counts.

6 Evaluation of Future Optimisations

An Arbitrary Lagrangian Eulerian (ALE) generalisation of Lare is under devel-
opment. This would mean the requirement to remap each iteration will no longer
hold, and instead a move to ALE would allow the remap step to only be done
once the grid becomes sufficiently deformed. By performing an investigation into
the expected performance of an hypothetical ALE variant of Lare we can gain
valuable insight into the potential performance gains.

By moving to an ALE code, we can vary the frequency of the remap, a
metric will be developed to formally determine the value of this frequency (Fr),

but initial indications show that remapping will be required, on average, once
every tenth iteration (Fr = 0.1) over the course of the simulation. By varying
the frequency of the remap, the code will be affected in two main ways. Firstly,
it will significantly reduce the general cost per iteration in terms of compute, as
the remap step will no longer be present. Secondly, reducing the frequency of the
remap step reduces the frequency of inter-process communication. In changing
the code in this way, the total cost is no longer as described in Equation 4, but
instead includes a term to denote the new remap, as in Equation 6.

Ttotal = Tlagrangian step + Tremap new (6)

This equation can then be reduced further, as shown in Equation 7.

Ttotal =

iterations∑
i=0

(tlagrangian step) +

iterations/Fr∑
j=0

tremap new (7)

In order to express the new total cost, relative to the old, we can extend Equation
4 to include terms for the relative costs. This is shown in Equation 8.

Ttotal new = (Tlagrangian step × Clagrangian step) +

(Tlagrangian remap × Cremap new × Fr) (8)

If we assume no change to the cost of the Lagrangian step (Clagrangian step = 1),
we can perform an investigation into how the frequency of remap and the cost of
remap affect the overall performance. Table 5 shows the percentage decrease in
run-time obtained for different values of Fr and Cremap new for a 8,192 square
problem on 36 processors performing 100 iterations, in which the remap step
contributes just under 65% of the run-time.

Fr

1 0.5 0.25 0.2 0.1 0.001

C
r
e
m

a
p

n
e
w 1 0.00 32.15 48.22 51.44 57.87 64.24

2 -64.30 0.00 32.15 38.58 51.44 64.17
4 -192.90 -64.30 0.00 12.86 38.58 64.04
5 -257.20 -96.45 -16.07 0.00 32.15 63.98
10 -578.69 -257.20 -96.45 -64.30 0.00 63.66

Table 5: A table showing the percent decrease in run-time for different values of Fr and
Cremap new for a 8,192 square problem on 36 processors performing 100 iterations.

From Table 5 we can clearly see that reducing the remap frequency offers large
performance gains as the remap frequency decreases for reasonable values of
Cremap new. Optimistic projections for this optimised code hope that it will have
a similar cost for the lagrangian step (Clagrangian step = 1), a remap cost that

is around twice as large (Cremap new = 2) and allow the remap to be performed
on average every ten steps (Fr = 0.1). From Table 5 we can see this may offer a
speed-up greater than 50%.

7 Conclusion

In this paper we have presented a predictive performance model for Lare, a MHD
code developed by, and maintained at, the University of Warwick. This model
allows us to predict the run-time of Lare accurately on a variety of platforms. We
have validated the accuracy of the model to 90% on two clusters, a commodity
cluster located at the University of Warwick and a 360 TFLOP/s capability
resource located at LLNL.

The model was shown to perform well for both weak and strong scaling over a
wide range of core counts. We have also used our model to provide a forward look
at possible optimisations in the Lare code base, with an evaluation of the gains
that may be expected. We also plan to extend the model to the 3-dimensional
version of Lare and develop predictive performance models for similar physics
codes with the aim of drawing comparisons between these and Lare.

Acknowledgements

We would like to thank Todd Gamblin and Scott Futral for their invaluable help
in utilising Sierra and the other Open Compute Facility resources at Lawrence
Livermore National Laboratory. This work is supported by the EPSRC grant: A
Radiation-Hydrodynamic ALE Code for Laser Fusion Energy (EP/I029117/1).

References

1. Pang, B., li Pen, U., Perrone, M.: Magnetohydrodynamics on Heterogeneous ar-
chitectures: a performance comparison. CoRR abs/1004.1680 (2010)

2. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S., Stone, S.S., Kirk, D.B., Hwu, W.m.W.:
Optimization principles and application performance evaluation of a multithreaded
GPU using CUDA. In: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming. PPoPP ’08, New York, NY, USA,
ACM (2008) 73–82

3. Griebel, M., Zaspel, P.: A multi-GPU accelerated solver for the three-dimensional
two-phase incompressible Navier-Stokes equations. Computer Science - Research
and Development 25 (2010) 65–73 10.1007/s00450-010-0111-7.

4. Arber, T., Longbottom., A., Gerrard, C., Milne, A.: A Staggered Grid, Lagrangian-
Eulerian Remap Code for 3-D MHD Simulations. Journal of Computational
Physics 171(1) (2001)

5. Kerbyson, D., Hoisie, A., Wasserman, H.: Modelling the performance of large-scale
systems. IEE Proceedings – Software 150(4) (2003) 214

6. Hammond, S.D., Mudalige, G.R., Smith, J.A., Davis, J.A., Jarvis, S.A., Holt, J.,
Miller, I., Herdman, J.A., Vadgama, A.: To upgrade or not to upgrade? Catamount
vs. Cray Linux Environment. In: Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on. (2010) 1 –8

7. Herdman, J.A., Gaudin, W.P., Turland, D., Hammond, S.D.: Benchmarking and
Modelling of POWER-7, Westmere, BG/P, and GPUs: An Industry Case Study.
ACM SIGMETRICS Performance Evaluation Review 38(4) (2011)

8. Pennycook, S.J., Hammond, S.D., Mudalige, G.R., Wright, S.A., Jarvis, S.A.: On
the Acceleration of Wavefront Applications using Distributed Many-Core Archi-
tectures . The Computer Journal 55(2) (2011) 138–153

9. Mudalige, G.R., Giles, M.B., Bertolli, C., Kelly, P.H.: Predictive modeling and
analysis of OP2 on distributed memory GPU clusters. In: Proceedings of the second
international workshop on Performance modeling, benchmarking and simulation
of high performance computing systems. PMBS ’11, New York, NY, USA, ACM
(2011) 3–4

10. Giles, M.B., Mudalige, G.R., Sharif, Z., Markall, G., Kelly, P.H.: Performance anal-
ysis of the OP2 framework on many-core architectures. SIGMETRICS Perform.
Eval. Rev. 38(4) (2011) 9–15

11. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: incorporat-
ing long messages into the LogP model - One step closer towards a realistic model
for parallel computation. In: Proceedings of the seventh annual ACM symposium
on Parallel algorithms and architectures. SPAA ’95, New York, NY, USA, ACM
(1995) 95–105

12. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subra-
monian, R., von Eicken, T.: LogP: towards a realistic model of parallel computa-
tion. In: Proceedings of the fourth ACM SIGPLAN symposium on Principles and
practice of parallel programming. PPOPP ’93, New York, NY, USA, ACM (1993)
1–12

13. Mudalige, G.R., Vernon, M.K., Jarvis, S.A.: A Plug-and-Play Model for Evaluating
Wavefront Computations on Parallel Architectures. In: 22nd IEEE International
Parallel and Distributed Processing Symposium (IPDPS08). (2008)

14. Davis, J.A., Mudalige, G.R., Hammond, S.D., Herdman, J., Miller, I., Jarvis, S.A.:
Predictive Analysis of a Hydrodynamics Application on Large-Scale CMP Clusters.
In: International Supercomputing Conference (ISC11). Volume 26 of Lecture Notes
in Computer Science (R&D). Springer, Hamburg, Germany (2011) 175–185

15. Sundaram-Stukel, D., Vernon, M.K.: Predictive analysis of a wavefront application
using LogGP. SIGPLAN Not. 34(8) (1999) 141–150

16. Hammond, S.D., Mudalige, G.R., Smith, J.A., Jarvis, S.A., Herdman, J.A.,
Vadgama, A.: WARPP: A Toolkit for Simulating High Performance Parallel Scien-
tific Codes. In: 2nd International Conference on Simulation Tools and Techniques
(SIMUTools09). (2009)

17. Janssen, C.L., Adalsteinsson, H., Kenny, J.P.: Using simulation to design ex-
tremescale applications and architectures: programming model exploration. SIG-
METRICS Perform. Eval. Rev. 38(4) (2011) 4–8

18. Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., Kersey, C., Oldfield, R., Weston,
M., Risen, R., Cook, J., Rosenfeld, P., CooperBalls, E., Jacob, B.: The structural
simulation toolkit. SIGMETRICS Perform. Eval. Rev. 38(4) (2011) 37–42

