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Abstract. As core counts increase in the world’s most powerful super-
computers, applications are becoming limited not only by computational
power, but also by data availability. In the race to exascale, efficient and
effective communication policies are key to achieving optimal application
performance. Applications using adaptive mesh refinement (AMR) trade
off communication for computational load balancing, to enable the fo-
cused computation of specific areas of interest. This class of application
is particularly susceptible to the communication performance of the un-
derlying architectures, and are inherently difficult to scale efficiently. In
this paper we present a study of the effect of patch distribution strate-
gies on the scalability of an AMR code. We demonstrate the significance
of patch placement on communication overheads, and by balancing the
computation and communication costs of patches, we develop a scheme
to optimise performance of a specific, industry-strength, benchmark ap-
plication.

1 Introduction

In the race to exascale, floating point operations are becoming cheaper and the
real challenge is providing data to utilise the available computational power.
Communications are therefore becoming more important in scientific computing
and efficiently transferring data will be key to scaling the existing generation of
petascale applications.

Adaptive mesh refinement (AMR) is a technique used to increase the res-
olution of computation in areas of interest—such as shock fronts and material
interfaces—avoiding the necessity of a uniform fine-grained mesh [1, 2]. The tech-
nique uses multiple levels of refinement, where areas of interest are identified and
the accuracy of computation is increased, by subdivision of the problem domain.
This decomposition and refinement creates a natural computational load imbal-
ance as work will be clustered around the areas of interest. The technique uses
a distribution strategy to share the increased workload between under-utilised
compute resources. The basic unit of distribution is a patch, a rectangular sub-
grid of cells which result from mesh refinement. The decrease in computation
time offered by AMR comes at the cost of increased communication overheads,



caused by additional boundary communications, and data transfer between re-
finement levels. The management of patches and associated AMR metadata
creates an additional computational overhead, however, it is not the primary
focus of this paper.

In this paper we present a cost-benefit analysis of patch distribution strategies
and identify optimisation opportunities. We present our study in the context
of Shamrock, a 2-dimensional, Lagrangian hydrodynamics code utilising AMR,
developed at the UK Atomic Weapons Establishment (AWE). Shamrock is an
industry-strength benchmark supporting a range of architectures. It is a key
tool in evaluating future high-performance computing technologies at AWE, and
provides a robust software framework for our investigation [3].

Specifically, we study how allowing workload imbalance can, under certain
conditions, reduce the communication overheads and thus, by identifying situa-
tions where patch distribution has a negative effect on overall runtime, improve
the scalability of the code. Initially, we demonstrate the application of AMR
on a symmetric, and therefore, naturally load balanced problem. In this case,
any distribution of patches will increase communication time and harm overall
performance. We extend this simple example to motivate the use of patch dis-
tribution on inherently more representative asymmetric problems, where load
balance is not guaranteed. For these asymmetric problems we demonstrate the
available trade-off between communication and computation costs, and highlight
the potential advantages of an optimal distribution strategy.

The specific contributions of this work are as follows:

– A cost-benefit analysis of AMR patch distribution on symmetric and asym-
metric input decks is documented.

– We implement an AMR-level distribution threshold to mitigate cost between
fully enabled and fully disabled patch distribution strategies.

– We demonstrate the potential of an intelligent, environment-driven, patch
distribution strategy, through hand tuning, motivating the case for a runtime-
based heuristic distribution strategy.

The remainder of this paper is structured as follows: in Section 2, we present
an overview of related work. Section 3 presents a more detailed discussion of
the key aspects of AMR. In Section 4 we analyse the load imbalance caused by
two different problem input decks. In Section 5 we analyse the scalability of two
patch distribution schemes, and Section 6 presents an analysis of the application
of a distribution threshold-based on the AMR level. Section 7 then demonstrates
how, with prior knowledge of expected communication and computation costs,
we can improve the runtime and scalability of the application. Finally, in Section
8 we conclude the paper and discuss future work.

2 Related Work

The structured AMR techniques developed by Berger and Oliger [1] have been
successfully applied to a number of problem domains including cosmology [4, 5],



astrophysics [6], and shock hydrodynamics [7, 8]. The power of AMR in increasing
solution accuracy without the requirement of a uniform fine-grained mesh has
motivated investigation into ensuring the scalability of these techniques.

Codes utilising AMR typically contain a number of distinct steps that can
have an impact on scalability: adding refined patches to flagged areas of inter-
est, balancing the load of patches across processors, and communication and
synchronisation between patches during calculations.

Adding refined patches, or re-gridding, is a computationally intensive process
involving identifying areas of interest, flagging the cells in these areas, and cre-
ating a set of refined patches to cover all the flagged cells. Luitjens and Berzins
present a study of three common re-gridding techniques, remarking on the com-
munication and computation complexity of the three algorithms, and demon-
strating scalable results from the Berger-Rigoustous algorithm [9, 10].

Optimal distribution of refined patches is key to achieving efficient execution
and acceptable runtimes. Lan et al. present reductions in runtime of up to 47%
when using a grid-splitting technique to move work from overloaded processors to
underloaded ones [11]. Using system measurements provides an effective way to
ensure work is evenly balanced [12], and the optimisations presented in Section
7 make use of a set of simple measures of system performance to develop an
efficient patch distribution scheme. Our work differs from previous research by
building on work in performance modelling [13, 14], using measured parameters
to estimate the optimal distribution of patches.

Identifying the factors limiting the scalability of AMR is an ongoing problem,
however, the key features identified by Colella et al. provide a platform for in-
vestigation: minimising communications, efficiently computing patch metadata,
and optimising communication between coarse and fine patch boundaries [15].
Van Straalen et al. extend these features, concluding that the traditional con-
cerns over load imbalance and communication volume were not as critical to
application performance as identifying and isolating subtle use of non-scalable
algorithms in the grid management infrastructure of the AMR framework [16].

3 Adaptive Mesh Refinement

Adaptive mesh refinement is the process of increasing the resolution of compu-
tation at specific areas of interest, allowing increased accuracy where it is most
needed. Figure 1(a) illustrates how AMR would be applied to a simple area of
interest. An area of interest is a portion of the problem where there is a high
degree of entropy, such as at material interfaces or at shock fronts.

The AMR capability of Shamrock is provided by custom AMR library, rather
than third-party AMR package such as SAMRAI [17] or Chombo [18]. Areas of
interest are identified and the cells containing them are flagged. These flagged
cells are then grouped into rectangular patches, which may contain some un-
flagged cells. Computation is carried out over all patches, and hence, all levels.
Solutions are transferred between the patches on different levels, with coarse
solutions being mapped up to higher levels, and the more accurate solutions



(a) A complete AMR mesh for
a simple problem.

Level 0 patch

Area of interest

Level 1 patch

Level 2 patch

(b) Multiple levels of refined patches.

Fig. 1: AMR mesh and corresponding application of patches.

being projected back down. A typical arrangement of patches is illustrated in
Figure 1(b).

The complexity of AMR, and the associated metadata required, present some
problems for a parallel implementation: (i) newly created patches need to be
assigned to a processor, (ii) boundaries must be communicated between patches,
sometimes across AMR levels, and (iii) solutions must be mapped and projected
between patches.

Once areas of the problem have been refined, work required in that area, and
hence CPU time spent computing that area, will increase. In order to combat this
it is common to distribute the extra work to processors with a smaller workload.
Refinement may happen in only one small area of the problem, and if the newly
created patches are not distributed in an effective way then the resulting load
imbalance is likely to negatively affect the amount of time spent in computation.
However, distributing the patches will increase the cost of both the boundary
communications and the transfer of solutions between patches.

Boundary communications occur at patch interfaces and involve the swap-
ping of variables in ghost cells between adjacent patches. However, boundary
communications may also have to cross refinement levels, since a patch may be
adjacent to another patch on a different level. Boundary communications across
refinement levels involve some additional computational overhead as solution val-
ues must be interpolated onto the grid due to the differing resolution. Solution
transfer occurs where patches on different refinement levels overlap, and involves
the transfer of the necessary variables, between levels, for each overlapping cell.
The data needs to be transferred every timestep, so high transfer costs affect the
scalability of the code.

The competing factors of communication and computation need to be ef-
fectively managed in order to minimise runtime. At small scale the addition of



Tricca Hera

Processor
Intel E3-1240 AMD 8356

3.3 GHz 2.3 GHz
Compute Nodes 1 864

Cores/Node 4 16
Total Cores 4 13,824

Memory/Node (GB) 12 32
Interconnect N/A Infiniband DDR
Compiler Intel 11.1 Intel 12.1

MPI OpenMPI 1.4.3 OpenMPI 1.4.3

Table 1: Summary of experimental platforms.

more processors will reduce overall runtime, as the added communication over-
heads are insignificant compared to the reduction in computation time. At larger
scale the ratio of communication to computation is no longer favourable, and
the added communication cost drives up overall runtime. By finding effective
ways to balance the computation-communication trade off, we can increase the
performance and scalability of the code.

4 Symmetric and Asymmetric AMR

As discussed in Section 3, a key component of AMR is patch distribution. This
enables local fine grained analysis in areas of interest, whilst maintaining an even
workload for all processors.

With the existing patch distribution strategy, patches are always distributed,
regardless of locality, with a probability based on an estimation of current com-
putational workload. The implication of this strategy is that previously neigh-
bouring patches, in both the horizontal and vertical domain, can be physically
distributed across the whole machine, increasing communication times. The na-
ture of Shamrock means that the majority of communication is the exchange of
boundary cells and transfer of solutions, and although some global communica-
tion is required, physical proximity is crucial for keeping communication costs
at a minimum, and in turn improving scalability.

Throughout this paper we make use of results obtained from two different
computing platforms, illustrated in Table 1. The first is a quad-core worksta-
tion, used to demonstrate behaviour at small scale, the second is a large 127
TFLOP/s supercomputer, located at the Lawrence Livermore National Labo-
ratories (LLNL) Open Compute Facility, used to demonstrate the scalability of
our techniques.

4.1 Symmetric AMR

We demonstrate a symmetric decomposition using a square multi-material prob-
lem, executed on four processors. Although the resulting mesh is not symmet-



(a) A simple three material prob-
lem.

(b) The initial mesh, including re-
fined areas.

(c) Patch assignment without dis-
tribution.

(d) Patch assignment with distri-
bution.

Fig. 2: A symmetric multi-material problem, with the corresponding AMR mesh
and patch assignments.

rical, the processors receive the same number of refined cells, giving an approx-
imately equal and naturally balanced decomposition. With the original distri-
bution policy, patches will be distributed to different processors, reducing the
physical proximity of neighbouring patches. Whilst the goal is to reduce load
imbalance, this distribution strategy actually introduces a small imbalance due
to the order of patch distribution. The added communication cost of this distri-
bution also has a significant impact on runtime. We also note that despite the
obvious symmetry of the problem mesh, the refinement may be asymmetrical due
to the nature of the underlying algorithm. Whilst this may not be a representa-
tive AMR computation, it demonstrates a situation where patch distribution will
perform poorly. From this example we can then infer potential performance gains
from alternative patch distribution strategies in more representative problems.
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(b) Distributed symmetric mesh.

Fig. 3: Runtime breakdown for a symmetric decomposition on four cores.

Figure 2(a) presents the problem, with its area of interest, coupled with the
resulting mesh, Figure 2(b), from an AMR level of four. We illustrate the patch
distribution when decomposed over four processors firstly from a no distribution
policy, Figure 2(c), and secondly a round-robin distribution, Figure 2(d).

The amount of time spent in computation time and communication time is
presented in Figure 3. Both decompositions are load balanced, with each proces-
sor spending an average of 268.98s in the computation portion of the application.
However, the distribution of the patches in Figure 2(d) has destroyed the spatial
locality of the patches and increased the communication times to an average of
60.67s. By keeping patches local the communication time is reduced to an aver-
age of 19.96s, which provides a speedup of 1.14×. These differences are caused
wholly by on-node patch distribution, where communication times are signifi-
cantly lower than off-node.

4.2 Asymmetric AMR

In Section 4.1 we demonstrated the unnecessary overheads of patch distribution
on a symmetric problem decomposition. However, this is an unrealistic represen-
tation of typical input data, as such data is unlikely to decompose symmetrically
across a range of processors. Whilst a lack of symmetry in decomposition does
not inherently imply load imbalance, we can no longer guarantee it. Patch dis-
tribution strategies may improve performance by reducing this load imbalance.

In this section we illustrate the benefit of patch distribution on asymmet-
ric decompositions. Using an single quadrant of Figure 2(a), presented in Fig-
ure 4(a), we obtain a naturally asymmetric decomposition, through which we
can compare the two distribution strategies by analysing the impact of the load
imbalance. Without distribution, all of the patches obtained through mesh re-
finement will be assigned to the same local processor, illustrated in Figure 4(c),
rather than being shared between all processors.



(a) A simple, asymmetric, three
material problem.

(b) The initial mesh, including re-
fined areas.

(c) Patch assignment without dis-
tribution.

(d) Patch assignment with distri-
bution.

Fig. 4: An asymmetric multi-material problem, with the corresponding AMR
mesh and patch distributions.

In Figure 5 we present the breakdown of computation and communication
time for each processor, illustrating the available performance gains afforded
through patch distribution. The disparity between computational workload is
illustrated in the communication times of the remaining processors as they wait
for the overloaded processor. For patch distribution we see a reduction in the
worst case communication times, from 120s down to 24s, and a levelling of com-
putation times, resulting in a reduction in runtime.

This extreme case illustrates the runtime increases created when the load
imbalance is maximal, thus highlighting the benefit of patch distribution to load
balance in AMR applications. The cost of this technique is the 25% of time spent
in the communication phase, which has wide implications in the scalability of
the code.
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(a) Non distributed asymmetric mesh.
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(b) Distributed asymmetric mesh.

Fig. 5: Runtime breakdown for an asymmetric decomposition on four cores.

5 Scalability Study

Section 4 illustrates the disparity between performing AMR with and without
patch distribution enabled, through both symmetric and asymmetric problem
decompositions. Both of the examples presented were designed to illustrate the
performance of the techniques in ideal circumstances. However, in more realistic
scenarios a middle ground between the two examples is likely to be observed.

To illustrate this more realistic scenario we perform a scalability study of the
two techniques applied to the same problem decomposition. For this study we
use the problem from Figure 2(a), which is initially symmetrically decomposed,
and strong scale it, by increasing the processor count but keeping the global
problem size constant. For our study we selected a problem comprised of 1
million cells, computed on a selection of processor counts ranging from 4 to
1024, in powers of 2. Evaluating the proportion of runtime spent in computation
and communication allows us to comment on the scalability of each distribution
strategy.

Figure 6 presents the breakdown of computation and communication times
for runs of the symmetric problem at 9 different processor counts on Hera. The
reduction in communication time with patch distribution disabled is shown to
vastly increase the scalability of the code. Initially, the problem is symmetrically
decomposed over 4 processors, hence the lower runtime when patches are not
distributed. As core counts increase, the computation and communication times
become more diverse between the two distribution strategies. Whilst the lowest
overall runtime time is found on 32 processors with patch distribution enabled,
as the number of processors increases communication becomes the dominant fac-
tor – accounting for 71.4% of the total runtime on 1024 processors. When patch
distribution is disabled, we no longer see such a marked increase in communica-
tion times and total runtime, although average computation time remains higher
due to the load imbalance. It is this trade off, spending more time computing
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(a) Patch distribution disabled.
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(b) Patch distribution enabled.

Fig. 6: Scalability study of strong scaled AMR problem evaluating patch distri-
bution.

locally in order to communicate less, that provides the improved run times at
scale.

In the following sections we try to address the balance between computation
time and communication time, finding a threshold to achieve both a reduction
in runtime and an increase in scalability.

6 Level-Based Distribution Threshold

In Section 5 we demonstrated the influence of problem symmetry in the perfor-
mance of patch distribution techniques. In the following section we illustrate how
applying a distribution level threshold can form a ‘middle ground’ between these
two techniques. To control communication overheads we apply a threshold on
patch refinement levels for distribution. With a threshold level of 2, only patches
at the second level of refinement and higher will be considered for distribution.
With a higher distribution threshold, we will increase the load imbalance, but
minimise the communication time, and vice versa.

Using the asymmetric problem presented in Figure 4(a) we demonstrate the
effect of a patch distribution threshold as the problem is strong scaled. Figure 7
shows how the different threshold levels span the runtimes of fully enabling or dis-
abling patch distribution. What is also clear, and intuitive, is that all threshold-
based results are bounded. Therefore the motivation for a threshold-based patch
distribution strategy lies in risk mitigation. Without ahead-of-time runtime pre-
diction, through modelling or execution, the best strategy is unknown, thus a
threshold strategy reduces risk of poor performance and scalability.
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Fig. 7: Scalability analysis of patch distribution threshold levels.

7 Optimising Patch Distribution

In previous sections we have demonstrated the importance of using patch distri-
bution techniques to balance computational work across processors against the
communication costs incurred by data transfers. However, these schemes were
developed using simple, intuitive heuristics, without consideration for the more
complex relationship between computation time and communication time.

To make more optimal decisions about the distribution of patches during pro-
gram execution we utilise a model based on three measured parameters: compu-
tation time per cell (Wg), network latency (l), and network bandwidth (G). We
use these parameters to estimate the time required to compute and communicate
a patch q on a processor p using the following formula:

tq,p = Wg (cellsp) ×
(
lp (q) +

q

Gp (q)

)
(1)

where lp and Gp are the latency and bandwidth obtained when sending the patch
to processor p. These network parameter values will change based on the type
of communication (on or off-node) being performed.

Rather than evaluating only computational workload, we take communica-
tion overheads into account to select the most appropriate processor for the
current patch, considering: (i) increased communication time incurred by the
patch, and (ii) how this overhead compares with the estimated computational
saving. Our new patch distribution scheme utilises this information by main-
taining a list of the total estimated work on each processor, and selecting a
processor for a given patch that will increase the current maximum runtime the
least. Equation 2 describes this scheme mathematically:

pq = min
p∈processors

(tp + tq,p) (2)
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Fig. 8: Runtime comparison of patch distribution strategies.

where pq is the processor selected for patch q, and tp is the total estimated work
time currently assigned to processor p.

Using Wg values measured from a single processor run on the target system,
and latency and bandwidth values estimated using the SKaMPI benchmark [19],
Figure 8 demonstrates the obtained performance increases of our model-based
patch distribution strategy.

The performance of our optimised strategy is generally equivalent to the best
performance of out the two previous strategies, but out performs it in certain
configurations, on 16 and 32 cores by 18.1% and 29.1% respectively. The lack
of performance increase in other configurations is attributed to lack of sufficient
computation and the increased overheads of maintaining this new mapping. More
efficient metadata management would decrease the overhead of patch selection
and improve performance of the optimised strategy.

8 Conclusions and Future Work

As the size of high-performance computers increases, applications will be con-
strained not by computational power, but by data availability. AMR presents a
technique to increase the efficiency of computation by focusing work on areas of
interest. This, however, will create an imbalance of work, as refined patches will
typically occur in highly localised areas of the problem. Load balancing can be
used to reduce load imbalance at the expense of increased communication costs.
We have demonstrated the benefits and limitations of patch distribution strate-
gies on both symmetric and asymmetric problem decompositions. Additionally
we have shown how a threshold-based distribution strategy can mitigate risk
between the two extremes. By utilising an optimised patch-distribution strategy
that considers the runtime impact of patch distribution, we can make informed
decisions about more optimal patch locations, with up to 29% improvements over



the current strategies. In future research we plan on employing a more sophis-
ticated performance model of the Shamrock code to enhance performance pre-
dictions to improve patch distribution decisions. Combined with a more efficient
metadata management strategy, runtime improvements offered by the optimised
distribution strategy are expected to be even more significant. We will combine
this investigation with work to port Shamrock to an external AMR framework,
to benefit from a wide variety of research into scalable AMR techniques.
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