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Abstract
We pose the question: while it is natural to embed specialized sys-
tems functionality (e.g. databases) in programming languages, how
can programming language techniques simplify constructing and
analyzing scalable computing systems? This topic is of increasing
importance with the ongoing specialization of data and computing
models in databases, systems, scientific computing and AI. We in-
troduce K3, an event-driven language to represent, compose and
analyze distributed runtimes. K3’s goals are twofold, first to facil-
itate the synthesis of scalable domain-specific runtimes that take
holistic advantage of domain properties, and second, to coordinate
existing popular runtimes and platforms in a declarative fashion un-
der a unified optimization framework. We present K3’s distributed
event-driven computation model, and its annotation model for data,
control, execution and optimization concerns.

1. Introduction
The emergence of domain-specific languages (DSLs) and systems
is intrinsically tied to the spread of computational methods through-
out business, science, engineering, medicine and numerous other
disciplines. DSLs do not require general programming proficiency
from users, while benefiting from restricted semantics for safety
and correctness, as well as optimization and efficiency.

However, from an execution perspective, DSLs continue to uti-
lize the host language’s computation infrastructure as designed for
the general-purpose setting. Consider a classical runtime: a rela-
tional database (RDBMS). RDBMS are often used to embed spe-
cialized data models, such as for stream and graph processing.
At scale, the architectural rigidity [13] of monolithic “one-size-
fits-all” DBMS (e.g. transactions, set-at-a-time execution, storage
schemes) necessitates lightweight, specialized runtimes.

We present K31, an expressive language and toolchain for
building scalable data- and compute-intensive runtimes that ex-
ploit domain-specific semantics throughout the software stack. Our
goals complement the literature on language support for embed-
ding (e.g. multi-stage programming [14] and language virtualiza-
tion [12]), focusing on simpler DSL runtime synthesis, and scal-
ability. K3 addresses the needs of long-running event and data-
driven processing, a computation model that captures services,
from systems daemons to cloud-based web applications and data-
intensive scientific computing and analytics.

K3 is a multi-platform compiler that targets a range of parallel
programming frameworks and distributed data stores (as well as a
C++, OpenMP, MPI, and CUDA stack) as its execution primitives,
to achieve a variety of scalability and fault-tolerance characteris-
tics. Today, such “platforms-as-libraries” composition is achieved

1 The name K3 is inspired by the Kleisli [3] language and the connections
drawn between complex objects, nested collections and monads.

with scripting languages such as Python which are agnostic to the
deployment and performance traits of the underlying platforms, and
perform little analysis-driven or statistics-driven optimization.

The central challenges in K3 are in designing an expressive
representation for diverse data and computation models, and the
high-level specification of system design and deployment aspects
to realize flexibility and scalability. These challenges are present
alongside the gamut of language design aspects, from type sys-
tem design to extensible, verified synthesis and code generation,
program analyses, and optimization strategies. K3’s ongoing de-
sign and approach to these challenges is influenced by compiling
runtimes for three declarative languages, SQL (as the compiler for
DBToaster [1]), Dyna [5] (a weighted logic programming language
for NLP and AI applications), and BLOG [11] (Bayesian Logic, a
programming language for probabilistic graphical models).

This paper introduces the language model of K3 (Section 2), its
extensible, typed annotation system for declarative specification of
program and data properties (Sections 3- 4), and finally optimiza-
tion and synthesis (Section 5) based on annotations, that addresses
adaptive optimization for a long-running event loop, and automati-
cally handles runtime parameter tuning and platform integration.

2. Language Overview
Computation Model The basic unit of computation in a K3 pro-
gram is a trigger, which is invoked with a message as its argument.
Triggers can access per-process global state, and can declare local
state which will not persist after the end of the trigger. The body of
a trigger is a side-effecting expression performing state transforma-
tion, and contains only acyclic code defined by primitive operations
(without higher-order functions) and computation with bounded it-
eration over collections. These restrictions guarantee the termina-
tion of a trigger. K3’s core primitives are described in Figure 1.

Communication between triggers takes place through an asyn-
chronous message passing model, with messages consisting of the
arguments to the recipient trigger. This message passing model can
be used to represent complex control flows such as recursion, while
keeping the core computations acyclic. The separation of complex
control flow from basic control flow allows several optimizations
such as deforestation and fusion to be applied aggressively. All trig-
gers are tail-calls by construction; each successive invocation of the
trigger is independent and uses only the message contents sent to it
and the global state.

This model is general enough that it can express the computa-
tion models of several other execution frameworks quite well, al-
lowing for a great deal of flexibility during optimization and code
generation. As a toy example of messaging, we can compute the
Fibonacci sequence as follows:

trigger fibonacci(n:int, a:int, b:int) =
if n == 0 then send(sink, b)
else send(fibonacci, n - 1, b, a + b)



Variables x,y,z Operators ⊕ ::= + | - | × | . . .

Constants c ::= 1, 2, . . . ′a′, ′b′, . . . , 〈ip : port〉

Functions f ::= x | λx.e

Expressions

e ::= x | c | e ⊕ e | ( e, e ) | C Primitives, tuples, collections
| f (e) Function Application
| if e then e else e Conditional
| do { ē } Sequencing
| send(t@c, e) Asynchronous Messaging
| e @ {x̄} Annotated expressions

Collection Operations

C ::= x | [] | [e] | C ++ C Constructors
| C += e Insert
| C -= e Delete
| C[e] := e Update by Value
| C[e]← e Update by Reference
| map ( f , C ) | groupby ( f , f , e, C ) | . . . Transformers
| peek(C) | C[e, ] Accessors

Programs

t ::= trigger x (y : τ ) = (d, e) Trigger Decl.
d ::= x : τ = e Function and Value Decl.
| x : collection(τ̄ ) @ {x̄} Annotated Collection Decl.
| annotation x { ā } Annotation Decl.

a ::= x : τ Interface Requirement
| x : τ = e Implementation Provision
| schema x : τ Schema Extension Decl.

p ::= d | t | stream [(x, v)] | loop <I/O> Event loop

Figure 1. K3 trigger, annotation and expression syntax.

In this example, the trigger will send itself a message if there is
more computation to be performed, or will send the result to a sink
for output if it is completed.

Data Model The K3 data model consists of purely functional in-
termediate data structures for operations within individual expres-
sions, along with mutable data structures for global state and per-
sistence across triggers.

The collection model is inspired by the complex object repre-
sentation [3], providing for nested collections and a small but pow-
erful set of collection transformers. Collections can further be ex-
tended with desired properties using annotations, as discussed in
Section 4. Views, which are derived data structures, can also be
expressed directly. This allows for the automatic generation of the
triggers necessary to perform automatic view maintenance and in-
cremental computation, as in the DBToaster Project [1].

Mutability in K3 is expressed through a Dual-Reference model,
which addresses two different concerns with the capability of refer-
ences. Contained References (crefs) are read-only references used
to obtain a pointer to an element in a particular collection. Since
these are read-only, the collection element pointed to by a cref
can only be modified by issuing update instructions to the collec-
tion. This ensures that runtime invariants of the collection (such as
the uniqueness of its elements) are maintained, while still allowing
sharing within the collection. Isolated References (irefs) are read-
write references that point to explicitly allocated data, which may
exist outside a collection. These allow individual data elements to
persist and be mutated arbitrarily.

3. Annotations
K3 uses annotations to encode domain-specific knowledge which
relates to a program or its operating circumstances. Annotations
are declarative in that they are a statement of properties, giving the
optimizer flexibility in choosing the most efficient implementation
which satisfies the expressed intent. In general, annotations can be
applied to any part of a K3 program.

The goal of the K3 annotation model is to express composabil-
ity within categories of annotations. Knowledge of the interaction
between annotations allows the optimizer to determine the imple-
mentation effect of the annotations at the group level, rather than at
the individual annotation, leading to more desirable global system
properties. This sets the K3 annotation model apart from conven-
tional macro systems and metaprogramming models, which do not
consider multiple metaprograms together.

One classification of annotations is based on what components
of a program they describe. Data annotations specify expected
properties, interfaces and behaviors of K3 data structures. We dis-
cuss data structure annotations in more detail in Section 4. Con-
trol annotations provide knowledge about control flow patterns and
desired system behaviors. These can include concurrency proper-
ties, fault-tolerance behaviors, debugging and profiling properties,
among others. An example of an annotation describing runtime log-
ging of a collection for resilience is discussed in Section 5. Exam-
ples of annotations in other classes are provided in Figure 2.

Constraint and Hint Annotations Annotations can also be clas-
sified on the basis of whether they express a constraint on the com-
piler or optimizer, or provide them a hint.

A constraint annotation is a directive to the compiler that it must
ensure the maintenance of a property or invariant at runtime. It is a
statement that the program will not be correct if the compiler does
not respect the annotation. An example of a requirement annotation
is uniqueness – a collection annotated with @unique indicates
that the collection cannot contain duplicate elements. In general,
integrity constraints are expressed through constraint annotations.

A suggestion annotation provides a hint to the optimizer as
to possible properties it may exploit in order to generate more
efficient code. These give the optimizer more flexibility, as they
provide information that cannot be inferred from the code, but can
be ignored if necessary, in favor of other opportunities.

4. Declarative Data Structures
In K3, collections are declared by specifying a content schema,
a depth, and a set of annotations dictating the properties of the
collection. The elements of each collection conform to the collec-
tion schema, which is a concatenation of the above-mentioned con-
tent schema and the collection’s structural schema. The structural
schema is initially empty but may be extended by collection anno-
tations as necessary. This permits, e.g., an annotation which orga-
nizes a collection into a tree structure to add schema extensions
without knowledge of the content schema or of the other struc-
tural extensions provided by other annotations. Such schema ex-
tensions are inspired by classic relational data structure encodings,
but K3 encourages these encodings to be encapsulated in compos-
able parts.

Composing Annotations An annotation is free to specify func-
tions or schema extensions that it requires or to specify which of
its definitions it provides to other annotations. K3 also permits re-
quirements to be specified in terms of the requirements of other
annotations; thus, an annotation which merely declares a list of re-
quirements can be viewed as an interface. In this fashion, the anno-
tations used to describe a collection are similar to inherited mixins
in an object-oriented system. While programmers may manually



Data Control and execution
Integrity Efficiency Assurances Scalability

(Constraint) (Hint) (Constraint) (Hint)
Functional Layout, and Fault tolerance, Degrees of

dependencies compression checkpointing parallelism
Sortedness Indexes, views Service-level Vectorization

Orderedness Allocation, GC agreements Scheduling
Referential Data placement Auditing and Autotuning

integrity and replication compliance heuristics
Concurrency Lock granularity Access control Profiling

Figure 2. Examples of annotation categories.

specify the annotations which satisfy these requirements, one area
of future research lies in how an optimizer might automatically se-
lect satisfactory annotations from a predefined set. This decision
may be made based on system configuration, runtime metrics, or
other similar information.

In addition to this fairly straightforward interaction, K3 anno-
tations may also specify hooks: functions which are to be invoked
in response to the invocation of other collection functions, much
in the style of aspect-oriented programming [10]. Hooks may be
used in a number of ways; they are, for instance, convenient for
collecting usage metrics or checking runtime invariants. They are
also particularly helpful in maintaining supporting data structures;
an annotation for defining logarithmic-time lookup on a functional
dependency, for instance, may add a hook to the collection’s add
method which updates the data structure used for the lookup. Such
a mixin which could generally extend a data structure with func-
tional dependency behavior would be extraordinarily awkward to
implement in object-oriented languages. In general, hooks provide
a means by which behavioral extensions can be composed much as
the structural schema composes data extensions.

As an example, let us consider a B+-Tree to demonstrate the
composition of annotations. A B+-Tree is a generalization of a
Binary Search Tree, where each tree node can hold a block of
entries. It is common in applications like databases and filesystems
which can optimize the input/output of the individual blocks by
fixing their size to the page size. There are two components to a
description of a B+-Tree in this framework: a description of the data
structure itself, and that of the interface over the structure which
provides the user-facing functionality.

To model the B+-Tree structure, we need to consider the behav-
iors at both the block and tree level. At the block level, B+-Tree
nodes have a capacity that is a parameter of the B+-Tree itself, and
well-defined methods for handling overflow and underflow. We can
encode those properties through corresponding annotations.

annotation Capacity(k:int) {
schema size: int = 0;
schema capacity: int = k;
requires OverflowHandler;

}
annotation Fill(f:float) {

schema fill: float = f;
requires Capacity;
requires UnderflowHandler;

}

The Capacity annotation declares metadata to keep track of
the current size of the block, while the Fill annotation keeps
track of the current occupancy relative to the total capacity.
They declare their requirement of the OverflowHandler and
UnderflowHandler annotations to handle the violation of their
respective constraints. The implementations of these annotations
would depend on the structure itself, and would be provided else-
where. We can then describe each block of the B+-Tree as a col-

lection of elements annotated with appropriate Capacity, Fill,
OverflowHandler and UnderflowHandler annotations.

To describe the tree structure over the blocks, we need to use an
annotation which adds a collection of child pointers to each block,
and an interface to operate over them.

annotation Tree {
schema children: Collection(self);
...;

}

In the above annotation, we use the keyword self to refer to the
entire schema type of an element of the collection, including the
extensions made by other annotations. There can be other notions
of self (with different names) that other annotations may need,
including the content schema by itself, or with just the extensions
provided by the current annotation.

Having described the structure of the B+-Tree, we need to de-
scribe how the user-facing functionality of the B+-Tree is provided
over this interface. This is done by using a specific B+-Tree anno-
tation.

annotation BPTree {
requires Tree;
insert = { ... };
update = { ... };
delete = { ... };

}

The complete B+-Tree therefore is a collection of blocks, with
the Tree and BPTree annotations in addition to the block anno-
tations. By abstracting the functionality required by the BPTree
interface, it would be possible to adapt a similiar interface over a
structure other than a tree – such as a DAG – which also provided
that functionality.

We can also extend the B+-Tree in other directions by including
other annotations. For example, if we can define a fractal layout
strategy for a collection and encapsulate that functionality in an an-
notation, we can attach that to each block of the B+-Tree to obtain
a cache-conscious B+-Tree. Alternatively, we can attach the func-
tionality of multi-version concurrency control to the B+-Tree by in-
corporating a logging system that records the modifications made
to the data structure. Both these sets of functionality can be imple-
mented in a data-structure agnostic way, and used independently of
each other on the same collection.

Depth and Acyclicity Typechecking the annotations themselves
is fairly straightforward. We use a subtype constraint system [4] for
its flexibility in inference and its capacity to model the composition
of the annotation declarations (in a fashion similar to inheritance).
While such systems can often produce intractably complex con-
straints, subtyping in K3 is quite restricted: only collections them-
selves have subtyping, while subtyping over other structures (e.g.
primitives and tuples) is naturally homomorphic. These restrictions
serve to mitigate constraint complexity.

Typechecking collections, however, is somewhat more complex.
As stated above, collections must be finite in structure to guarantee
termination; operations over collections must therefore also be fi-
nite. But unlike triggers, collection functions may be recursive. We
solve this problem with depth constraints, which enforce a variant
of primitive recursion (and thus termination) on collection func-
tions. While type-based termination has been accomplished with
dependent typing [9], K3 aims for a simpler approach to aid user
comprehension.

Whenever storage is allocated, it is assigned a depth. K3 depths
are modeled as intervals in one dimension. A depth constraint is
an assertion about the relationship between two intervals; the depth
of a collection, for instance, is an interval which entirely contains



the depths of all of that collection’s elements. Depth constraints are
also accumulated through usage; a cref may refer to another cref
only if the prior’s depth is greater than the latter’s. After all depth
constraints are accumulated through type derivation, constraint clo-
sure tests for a contradiction. If no contradiction appears in closure,
then no cycles appear in the reference model and thus all compu-
tation following the reference model will terminate. To our knowl-
edge, this termination guarantee is novel in a stateful system. The
iref references do not have a specific depth due to the fact that
they cannot contain cyclic types.

5. Optimization and Synthesis
Annotation-Driven Synthesis Annotations can drive the genera-
tion of control flows that are complex, but express simple design
patterns. For example, the following steps form one example of a
control structure to produce a continuously maintained log of the
events on a collection.

1. Construct an auxiliary log data structure LogC.

2. Write a trigger logOnCUpdate to generate a log entry given an
update on C, and insert that entry into LogC.

3. Hook logOnCUpdate to execute when an update of C occurs.

4. Write a trigger flushLogC to flush entries in LogC to disk.

5. Hook flushLogC to execute according to the desired flushing
policy.

The above process naturally fits in with K3’s data and com-
putation model, and the corresponding code can be completely
generated by the compiler using a single annotation: declare
C:Collection(...) @logged.

Multi-Platform Synthesis As mentioned in Section 2, the K3
computation model is sufficiently general to express the computa-
tion models of several execution platforms. This ability allows the
optimizer to analyze the flow of control of a program, and make a
decision of which one or several execution platforms to target. In
particular, this generality allows the compiler to use the high level
primitives provided by these platforms.

Alternatively, the optimizer may decide that it would be more
efficient to synthesize a runtime from scratch, if existing frame-
works proved inadequate for the control flow and data structure
requirements. Similar observations have been made by the Clydes-
dale Project [8] and Spark [15]. This balance of platform reuse and
synthesis is intended to improve the productivity of applications
developers in building systems tuned to their applications.

Adaptive Optimization K3 focuses on expressing long-running
programs, and one goal of the optimizer model is to be adaptive
over the course of execution. The optimizer should be capable of
making use of statistics gathered during execution and use princi-
pled machine learning models and statistical techniques to deter-
mine possible program transformations. Metrics may include ac-
cess patterns, availability of nodes in the network with time, etc.
In addition, the annotation model can make it simpler for the pro-
grammer to specify which statistics should be accumulated.

The optimizer could also be adaptive with respect to the compu-
tational resources available for execution. The addition of more –
or more powerful – hardware should influence the optimizer’s deci-
sion making process to favor backends that work well with the new
configuration. This effectively incorporates part of the problem of
scalability into the annotation and optimization layer.

6. Closing Discussion
Related work In contrast to parallel programming frameworks
(e.g. Hadoop, Pregel, GraphLab, Pig/Latin, FlumeJava) that fo-

cus on few programming primitives and a single data model, or
distributed data stores that focus on storage alone (e.g. complex-
objects with BigTable and Accumulo [2], key-values with Dynamo,
documents with MongoDB), K3 is a general language for long-
running computation, leveraging PL techniques for extensible pro-
gram annotations to reason about optimization opportunities and
scalability. Perhaps the most relevant is Spark [15], however their
focus is on resilient distributed datasets and coarse-grained paral-
lelism compared to our broader scope.

Our goals of a language for domain-specific runtimes contextu-
alizes our annotations differently than related work on annotations
for provenance in the database theory and PL communities [6].
Our work on declarative data structures, support for related and de-
rived data through functional dependencies, integrity constraints,
and views, and the implications that large data structures have for
scalability extends work on data structure synthesis [7].

Conclusion We have outlined K3, and introduced a subset of its
language-level features, including annotations, and optimization
and synthesis concerns. Our ongoing work includes developing
a rich standard library of annotations to capture common data
structure and execution properties, as well as both white- and black-
box optimization exploiting machine learning and control theory
techniques, and toolchain and use-case implementation.
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