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Abstract. Cutting tail latencies at the millisecond level in internet ser-
vices for good response times in data-parallel applications is possible by
integrating MittOS, an OS/data center interface. Typically, MittOS an-
alyzes white-box information of the internals of devices such as SSD’s
and decides if a given server can “fast reject” a service request. But
commercial SSD’s have a black-box design, so MittOS researchers have
developed machine learning models to determine if requests to commer-
cial SSD’s can be rejected or not. When run on CPUs, however, these
models cannot predict in the time it takes an SSD to fully process a
request, defeating MittOS’s fast-rejecting abilities. We demonstrate that
ASICs such as the Efficient Inference Engine (EIE) accelerate the pre-
diction times of these MittOS models well within the time it takes an
SSD to complete a request at minimal cost, cutting SSD tail latencies.
EIE achieves 2.01 µs inference latency while incurring minimal area costs
(20.4 mm2) and power costs (0.29 W). We show that integrating machine
learning into the critical path of operating systems becomes cost-efficient
and within reason.

Keywords: Model Compression · Hardware Acceleration · Scalability ·
Tail-tolerance.

1 Introduction

The problem of stragglers or “tail” is a widely studied problem in internet ser-
vices that use parallelism to achieve low latency [5]; tail-tolerance is considered
fundamental to providing good response for applications such as search, feeds,
ads, and more that use large-scale parallelism to process large data sets in ser-
vice of a single service request. MittOS proposes an OS/data center interface
that frames a latency threshold with each request, giving each of the parallel
servers an opportunity to “fast reject” the request. If the parallel servers can
make these decisions well, MittOS can effectively reduce service tail latencies at
the millisecond level in disks, SSD’s, and the OS cache [11].

Tail latency refers to the trailing “tail” found in latency CDF graphs (around
the 95th- or 99th-percentile latency) that is often induced by rare high-latency
incidents. As cloud environments and resource sharing scale out, resource con-
tention has become a major reason for such incidents [5]. While infrequent, when
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coupled with high degrees of parallelism, these high-latency incidents will dom-
inate performance, producing unacceptable latencies. “The tail latency prob-
lem” slows down overall system performance and amounts to bad or unreliable
service—ultimately to the detriment of service users.

While prior work has successfully cut tail latencies with time-savings on
the order of tens or hundreds of seconds [6], techniques for further reducing tail
latencies on the millisecond level have been less effective. Attempts have doubled
IO workload through cloning requests [2] or have had trouble handling requests
with bursty noise [13]. MittOS [11] tackles these issues at the millisecond level
through a new OS interface that is aware of application service-level objectives
(SLOs). Given SLOs for IO requests to hard disks, the OS cache, and SSD’s,
MittOS analyzes the internals of these devices to predict if the SLOs will be met;
if not, then MittOS will immediately reject these requests, returning EBUSY to
the application. Fast prediction allows for fast rejection so that the application
can stop waiting and retry its request on another node that is less busy. As a
result, MittOS can reduce overall state-of-the-art [5] HDD IO request latencies
at scale by 23%.

Most of the work to date with MittOS assumes “white-box” performance
models for server latency; that is, these devices are assumed to expose their
internal complexities, e.g., fullness of IO queues, sources of variation in latency,
etc. However, this makes a common IO element, the commercial SSD, a challenge
to incorporate in a MittOS system. Commercial SSD’s generally employ a black-
box design because the algorithms and structures within play a critical part in
their competitive performance and cost. For such devices, we cannot build a “fast
reject” responder based on knowledge of the internals, and this leaves MittOS
with no way to predict whether a given SSD request’s SLO deadline can be met.

Recently, MittOS researchers have explored the use of supervised machine
learning to build black-box models for closed SSD’s—and more generally sub-
systems of all kinds without explicit modelling. Their work produced a set of
deep neural network models that are studied in this report. Within MittOS,
these models can be used to predict which requests will have long latency, and
thus provide the ability to “fast reject” for the black-box SSD’s [7]. The elegance
of the approach is that the models can be trained with a commercial SSD (for
which we have no implementation information), using its performance to create
labeled data. Others have reported model accuracy results [7], but here we fo-
cus on evaluating the viability of the DNN’s as a system component in MittOS,
studying prediction latency and cost (in power and silicon).

Because SSD’s have much lower latency (∼50 microseconds) when compared
to traditional HDD’s (5+ milliseconds) and even data center network latencies
(100’s of microseconds when loaded), predictors for systems built on SSD’s must
make decisions much more quickly (Figure 1). SSD’s also support much higher
IOPS rates than HDD’s, so on a per-device basis, prediction (or “fast reject”
decisions) must be made at a much higher rate. Together, these make prediction
latency and cost critical factors. Prediction is useful for tail-tolerance only if it
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Fig. 1: Network RPC + device latency

can be done in approximately the latency for an SSD to serve an IO request,
which is on the order of µs (a 4KB read takes 100 µs).

Table 1: Summary of the MittOS Team’s Models
Model Topology # Layers Max Kernel Size # Weights # Operations

precise linear Linear, 8 352x352 583,520 1,167,040
fully-connected

good custom “storage-aware” 12 128x128 149,776 365,472

RAID5 aware “storage-aware” 12 352x352 1,115,490 2,727,652

The MittOS team has produced a number of models (Table 1). One example
is the precise linear model (Figure 5a), which is a small linear neural network
that achieves 99.94% accuracy. A second model from the team is the good custom
model (Figure 5b), which is a smaller but more complex model whose network
topology is “storage-aware” in that it mimics how storage devices work, achieving
97.94% accuracy. These accuracy levels are high enough to be useful in a scalable
MittOS system.

In this paper, we study achievable latencies and costs for running two in-
ference models: precise linear and good custom. As discussed above, in order to
be used in a MittOS system using SSD’s, prediction latencies must be below
∼50 µs. Moreover, the cost dynamics of the storage industry require that the
power and circuit costs of implementing these models be small on a per-SSD
basis. To meet these stringent goals, we employ pruning to reduce the compute
requirements of the models [10, 14]. We also employ a hardware accelerator, the
Efficient Inference Engine (EIE) [9], an ASIC optimized to run compressed model
inference.

Specific contributions of the paper include:

1. Accurate IO latency prediction models (precise linear and good custom) can
be pruned to dramatically reduce their size and computation costs with little
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reduction in accuracy. The costs for precise linear and good custom were
reduced by 98% and 95% respectively while incurring accuracy reductions
of only 2% and 6% respectively.

2. Using a hardware accelerator, the precise linear DNN model achieves infer-
ence latencies of 25 µs and as low as 2.5 µs for the pruned network. On
the same accelerator, the smaller good custom model achieves 15 µs for the
original, and below 2 µs latency for the pruned network. These latencies are
comfortably lower than the 50 µs requirement for use in a MittOS system
for SSD’s.

3. With the same hardware accelerator, precise linear requires less than 2/3
watts for a high inference rate (400,000/second), fast enough to support
IO rates for the fastest SSD’s. If the accelerator were implemented with a
modern CMOS process, this requirement could be reduced to 0.1 watts—
easily within the power limits of an SSD.

Overall, we conclude that both the specific DNN models and the general
approach can achieve latencies and power low enough for use in SSD-based IO
systems prediction for MittOS.

The rest of the paper is organized as follows: Section 2 describes how we
compressed our models; Section 3 details the resulting inference latency and
power consumption of the compressed models on the EIE and a CPU; Section
4 examines related work; and Section 5 summarizes our findings and discusses
future directions of research.

2 Reducing Model Size

The precise linear and good custom models parameterize the logical block ad-
dress (LBA), which are encoded in 8-bit binary format, of the current IO request
and the LBAs of pending IO requests. The precise linear model (Figure 5a) is a
linear neural network that has eight fully-connected layers with ReLU activation
functions. The whole network has 583k weights. The good custom model (Figure
5b) is more complex because it features a “storage-aware” design. Its network
topology mimics the structure of SSD storage partitioning and contention logic.
This model has 12 dense layers with linear activation functions and additional
Addition, Subtraction, and ReLU activation operators connecting the layers to-
gether. The kernel sizes are smaller than precise linear’s, so overall the model
only has 150k weights.

2.1 The precise linear model

To prune the precise linear model, we used TensorFlow’s Keras-based weight
pruning API, which gradually removes unnecessary low-weight connections and
then retrains the newly pruned model, repeating this process until a desired
sparsity is achieved. Based on [14], the API looks for small weights because they
have been shown to have little to no impact on inference when compared to



Evaluating Achievable Latency and Cost: SSD Latency Predictors 5

(a) Before pruning (b) After pruning to 98% sparsity

Fig. 2: Weight distributions of the precise linear model

larger weights. When looking at the weight distribution of precise linear (Figure
2a), we see that our model is made up of mostly such small weights, making it
particularly amenable to pruning.

We pruned the model aggressively, removing 90%, 95%, 97%, and 98% of
the connections to maximize size reduction. We stopped at 98% because further
pruning caused the model to become disconnected, destroying its accuracy pre-
cipitously. The weight distribution of the 98% sparse pruned model in Figure 2b
shows how low-magnitude weights are gradually removed.

It further follows from these weight distributions that low-magnitude weights
are, in fact, low-impact because the model does not suffer much loss in accuracy.
In Table 2, we can see that even the largest loss in accuracy, which came from
pruning to 98% sparsity, is only 1.91%.

Table 2: Pruned precise linear model accuracies
Sparsity (%) Accuracy (%)

0 99.94

90 99.87 (0.07 loss)

95 99.61 (0.33 loss)

97 98.82 (1.12 loss)

98 98.03 (1.91 loss)

2.2 The good custom model

We used a similar method to prune the good custom model. However, since the
good custom model is so small (∼150k weights), it was only pruned to 90%
and 95% sparsity, as again more aggressive pruning would remove all of the
connections between layers, destroying the model. In Figure 3, we can see the
distribution of weights before and after pruning.
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(a) Before pruning (b) After pruning to 95% sparsity

Fig. 3: Weight distributions of the good custom model

However, pruning caused significant problems with good custom. The re-
sulting accuracy of pruned models was unstable and predicted every request as
NON-EBUSY, effectively failing to classify requests correctly. All of the pruned ver-
sions started retraining at 92% accuracy and failed to improve. We believe this is
because the original model was under-trained and not robust enough to undergo
such aggressive pruning [14]. After pruning, we found that both 90% and 95%
sparse models exhibited 92.18% accuracy, but this may not be a good repre-
sentation of these pruned models’ accuracy. Of the 100,000 requests predicted
in our testing, 92,178 should be and were indeed predicted to be NON-EBUSY;
however, the remaining 7,822 requests which should have been predicted to be
EBUSY were all inaccurately predicted to be NON-EBUSY. As such, these accuracy
results do not meaningfully reflect how well the pruned good custom models
predict signals since they simply infer all requests to be NON-EBUSY.

3 Latency and Power

The EIE is an ASIC specially designed to run models compressed via Deep Com-
pression [10], which involves a combination of pruning, quantization and Huff-
man Encoding. Applying Deep Compression on neural networks creates models
that exhibit irregular computation because of sparse matrix-vector multiplica-
tion, layers, and activations. The EIE exploits the shapes of these models, as
its custom design specializes in handling irregular sparsity and weight sharing,
reducing redundant computation and storage. For instance, recognizing that
sparse vectors are full of zeros, EIE uses a compressed sparse column (CSC) for-
mat that seeks to store only non-zero values—the only values that have impact
on inference.

EIE is made up of a collection of processing elements (PEs). During execu-
tion, each PE is given a portion of a matrix to multiply with a given vector.
These PEs are controlled by a Central Control Unit. In Figure 4, we see the
logical layout of a single PE, which has specialized units designed to handle
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Fig. 4: Logical view of an EIE Processing Element [9]

CSC-formatted vectors and sparse calculations. For example, the Leading Non-
Zero Detect unit manages decoding CSC-formatted vectors, which are especially
useful given the activation sparsity often found in ReLU computation. Having an
array of PEs exploits the parallelism found in many models, further accelerating
computation. As such, EIE is well-suited to exploit the irregularities found in a
compressed model, as it attempts to maximize the throughput of the computa-
tion of non-zero values while minimizing or, if possible, eliminating PE compute
power wasted on processing zeros.

Having pruned our models, we looked into how they would perform on the
EIE as well as a CPU. Performance on the EIE was calculated via estimating
based on the EIE’s reported peak throughput (1.6 GOPS) and examination of
the sparsity of the weight matrices to account for workload GOPs and load
imbalance. Our performance calculations assume the worst case sparsity for in-
put and activation vectors (i.e., all vector elements are nonzero), and therefore
provide upper-bounds on throughput and latency. The EIE utilizes its resources
efficiently, so generally inference is compute limited. In this model, the remaining
benefit of batching would come from dynamic sparsity of the input and activa-
tion vectors, which cannot be estimated, and appears to provide no increase.
Likewise, the latency impact of batching would be a simple linear increase. The
EIE scales near-linearly up until it hits significant load imbalance, when on av-
erage ≤1 rows are allocated per PE at a given time. According to [9], at this
level of load imbalance, the EIE suffers from high variation in distributing the
rows to the PEs, as many PEs remain idle. Area and power estimates are based
on the EIE’s reported area and power consumption per PE and any additional
components (e.g., the Leading Non-Zero Detect unit).

The weight matrices of the precise linear model are small (352 rows max),
and performance drops around 16 and 32 PEs because increased sparsity and
fewer weights to distribute among the PEs incur even more load imbalance. In
spite of this, we can see that we achieve <10 µs latency easily with the EIE. As
seen in Tables 3 and 5, at 98% sparsity, which has comparable accuracy as seen
previously, the EIE can achieve a mere 2.01 µs/inference (Table 3) latency with
32 PEs while only incurring an area footprint of 20.4 mm2 and dissipating 0.29 W
(Table 5), which is significantly low-cost compared to allocating an entire CPU
for inference. Because of load imbalance, however, it would be more cost-effective
to use 8 PEs, which achieves 2.45 µs/inference for our 98% sparse model (Table
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3). This way we have fewer idle PEs at a given time while further reducing area
footprint to 5.10 mm2 and power dissipation to 0.073 W (Table 5).

Table 3: Average latency of precise linear models (µs/inference)
Sparsity CPU EIE EIE EIE EIE EIE EIE

(%) (i7-8700) (1PE) (2PEs) (4PEs) (8PEs) (16PEs) (32PEs)

90 14.1 81.1 40.5 20.3 10.1 5.07 2.53

95 13.0 40.7 20.3 10.2 5.08 2.54 2.31

97 12.4 24.7 12.4 6.18 3.09 2.81 2.55

98 13.4 17.3 8.63 4.32 2.45 2.23 2.01

Table 4: Average latency of good custom models (µs/inference)
Sparsity CPU EIE EIE EIE EIE EIE EIE EIE

(%) (i7-8700) (1PE) (2PEs) (4PEs) (8PEs) (16PEs) (32PEs) (64PEs)

0 7.49 251 126 62.8 31.4 15.7 7.85 3.93

90 7.08 25.5 12.7 6.37 3.19 1.99

95 7.36 13.3 6.65 3.32 2.08 1.89

Table 5: Peak throughput, area, and power of EIE
CPU EIE EIE EIE EIE EIE EIE EIE

(i7-8700) (1PE) (2PEs) (4PEs) (8PEs) (16PEs) (32PEs) (64PEs)

Peak Throughput 82.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4
(GOPS)

Area (mm2) 1406.25 0.638 1.28 2.56 5.10 10.2 20.4 40.8

Power (W) 65 0.0092 0.018 0.037 0.073 0.15 0.29 0.59

While the runtime latencies of the pruned good custom models seem promis-
ing, their unstable accuracies give us pause. However, since the original, un-
pruned good custom model is so small—its weight matrices are only 128 rows
max—the EIE does not end up suffering from the load balance issues that the
sparse ones encounter. As such, its runtime on 64 PEs (Table 4) is comparable
to the runtime of the pruned precise linear models. We did not calculate the
runtimes for 32 and 64 PEs for the pruned sparse good custom models, because
at those points the load imbalance is so severe that the EIE becomes extremely
volatile and the runtimes become unclear—perhaps running the EIE simulator
on these settings may reveal these runtimes.

4 Related work

Model compression and pruning are widely-studied techniques to reduce size and
computational cost. These techniques exploit the plentiful redundancy in trained
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deep neural networks. Optimal Brain Damage [12] used pruning to reduce the
number of connections to simplify network complexity. Magnitude-based pruning
[14] during training further showed how large deep learning models—e.g., deep
CNNs—can be pruned to 10x smaller size with minimal loss in accuracy. Deep
Compression [10] builds on these methods, as discussed previously, and employs a
combination of pruning, quantization and Huffman encoding to compress DNNs
such as AlexNet by 35x. Our work takes advantage of these advances, exploiting
pruning to reduce latency and power costs of DNN’s for IO latency prediction.

Hardware accelerators for DNN’s are widely available; incorporated in major
mobile phone platforms from Apple, Samsung, Qualcomm, and Huawei. These
accelerators typically support Int16 operations and rely on effective model com-
pression techniques to achieve acceptable latency and power (e.g. Edge Tensor-
Flow processing unit (TPU) [1]). The Edge TPU is a small ∼50mm2 piece of
silicon, and with support for 300x300 matrices, is designed for smaller networks.
It computes exclusively on smaller, cheaper datatypes (Int8, Int16), aiming to
accelerate quantized networks. Other accelerators include the EIE (which we
studied), the Efficient Speech Recognition Engine (ESE) [8] designed to to accel-
erate sparse LSTM models used for speech recognition, and the Eyeriss systems
[3, 4]. Any of these systems could be suitable for accelerating our IO latency
predicting modules.

Our work builds on MittOS [11], an OS interface that cuts tail latencies at
the millisecond level, extending it by replacing the explicit white-box models
with a trained DNN. Specifically, we show that the trained DNN can be a prac-
tical substitute in MittOS systems that manage tail-latency IO systems built for
SSD’s, which operate at latencies of a few hundred seconds. The broader litera-
ture on tail-tolerance includes hedging [5], tied requests [5], snitching [13], and
many more. However, we are not aware of other approaches within the context of
MittOS that employ trained DNN’s, and further none that explore the latency,
area, and power costs to make such application viable in SSD-based IO-systems.

5 Summary and Future Work

Since the EIE can achieve such low latency with little area usage and power
consumption, these MittOS neural networks become useful and effective tools in
predicting SSD IO requests, bringing us one step closer to integrating MittOS
into operating systems. It becomes unreasonable to assume that we must rely
on the CPU to support operating systems, as introducing machine learning via
ASICs into the critical path of operating systems becomes a reality. With 32
PEs, EIE can predict our 98% sparse precise linear model in 2.01 µs, and with
64 PEs, EIE can predict the unpruned good custom model in 3.93 µs. Thus,
our models achieve latencies well below the <10 µs latency of even the fastest
SSD reads and writes. As such, by means of ASICs like the EIE, introducing our
MittOS models into the CPU or near the SSD controller to serve SSD requests,
cutting their millisecond tail latencies, becomes practicable.
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Not only is pruning an effective method of compression, quantization has
been shown to reduce model size while maintaining accuracy [10]. Although EIE
can be computed in float32 with little to no change in area and power (SRAM
accesses dominate), it aims to quantize weights and compute in float16, so it
would be worth exploring how robust precise linear is in float16. It is also worth
testing how precise linear and good custom would run on the EIE simulator to
get a clearer idea of how much the load imbalance at a higher number of PEs
affects performance. While our performance and power model for the EIE does
not allow analysis of some potential benefits of batching, such study would be
an interesting direction for future work.
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