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Abstract. Deep learning models have enjoyed tremendous success when
applying to low-dimensional regular grid data such as image, video, and
speech. Recently, graph neural networks (GNNs) have been proposed to
learn from high-dimensional graph-structured data (e.g., social networks,
molecular structures, and protein networks). Unfortunately, existing sys-
tems that are developed for the construction, training, and deployment of
GNN models suffer from poor performance, especially when running on
big graphs that exceed the size of the on-board DRAMs of computation
accelerators such as GPUs. In this paper, we present Gin, a new com-
putational framework that is able to generate highly efficient compute
kernels for GNN inference. Specifically, Gin enables a user to continue
to use a familiar deep learning framework (e.g., TensorFlow) as the front
end, while utilizing a translator to translate the high-level representa-
tion of a GNN model into low-level codes. The back end in Gin will
compile the translated code and create the optimized kernels on CPU.
Our evaluation shows that Gin outperforms the state-of-art systems by
up to three orders of magnitude, significantly accelerating the inference
on billion-edge graphs.
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1 Introduction

Graph has been extensively employed to model various networks such as so-
cial networks, molecular graph structures, and biological-protein networks [6],
thanks to its ability of capturing the relationships (edges) between different en-
tities (nodes). As a result, researchers are increasingly interested in extracting
useful information from graph structures, as evidenced by an emerging trend
of applying deep learning (DL) techniques to graphs [2]. Similar to the tremen-
dous success of deep learning in speech, computer vision, and natural language
processing, these graph-based neural networks (GNNs) have also demonstrated
promising potentials in many applications (e.g. classification, embedding, and
recommendation system) [5].

In this work, we are interested in the inference performance of these graph
neural networks for two reasons. First, the inference of a trained model is the
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process when the model is deployed to classify, recognize, and process new inputs.
In fact, inference takes up most of the life cycle of deep learning models and the
number of applications relying on inference is abundant. For example, Facebook
services tens of trillions of inference queries per day [7, 22]. Second, it is very
important to point out that the inference phase, due to the absence of backward
operations and repeatedly updating on weights, is not as computational intensive
as the model training phase. However, it has a much more strict requirement
on throughput and latency [24], given its customer-facing nature [1]. It is also
worthy noting that unlike the training phase, the inference is often done on the
edge devices with less computational resources.

Unfortunately, exist systems all suffer from poor performance especially when
running on big graphs that exceed DRAM size of computation accelerators such
as GPUs. As we will show later in Section 2.2, it can take several minutes for
current systems to process a billion-edge graph. In this paper, we believe that
highly optimized kernels that are written in low-level codes are needed for faster
GNN inference. To this end, we have developed Gin, a new graph inference
framework that allows users to create highly-optimized inference kernels for a
variety of GNN models.

As shown in Figure 1, Gin consists of three major components: a front end
based on a common deep learning framework (Tensorflow used in this work), a
back end that utilizes a set of graph processing techniques, and a translator that
connect these two. Specifically, a user can use the dataflow framework provided
by the front end to define the computation in a GNN model. The front end of
Gin provides a set of message-passing-like APIs, which can be used to construct
user-defined functions (UDFs) to express the NN (neural network) computations
on the tensor data associated with each edge and vertex. As Gin’s front end
is built upon Tensorflow, users can use the operations on tensor provided by
Tensorflow. From the UDFs, the computation subgraphs will be derived and
fed into the translator to generate low-level codes. On the other hand, the back
end is a high-performance graph processing system written in low-level codes
(C++ in this work). The back-end takes the codes generated by the translator
as the input; then compiles with third party libraries to generate an optimized
binary. This binary reads the input tensor data for vertices or edges and yields
the resulting tensor data of the graph convolution.

The remainder of the paper is organized as follows. Section 2 gives a descrip-
tion of the background of GNN inference and motivation of this work. Section
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3 discusses the Gin framework in detail. Section 4 presents our experimental
results. We conclude in Section 5.

2 Background and Motivation

2.1 Inference of Graph Neural Networks

There have been a number of GNN models that are proposed recently (inter-
ested readers may refer to [23]). In this work, we have evaluated three models,
CommetNet [19], GCN [9], and G-GCN [17]. In CommetNet, cooperating agents
learn to communicate among themselves before taking actions. This model can
be used to solve multiple learning tasks such as traffic control. In contrast, GCN
applies a weighted-sum convolutional operation on an arbitrary graph, and has
been used in many semi-supervised or unsupervised tasks. Furthermore, incor-
porating the gating mechanism into graph convolution, the G-GCN model is
used to extract features for community detection.

A GNN model’s life cycle consists of two stages that have drastically different
computational properties. During the training stage, a training data set is fed
into the GNN model and the weights of the model are iteratively updated using
the back-propagation algorithm. To deal with large input graphs, many existing
models utilize vertex sampling techniques to train their models on a small portion
of the input graph in each epoch. Once the model is trained, the second inference
stage is to perform the forward pass of the model on the whole graph. Clearly,
while the training is often done in an offline fashion, the inference needs to be
performed quickly in real time. Therefore, improving inference performance is of
vital importance to the wider application of GNNs.

In a GNN model, the input data can be divided into three classes: feature
vector for vertices, feature vector for edges, and weight parameters. Same as
traditional deep learning models, GNN models are also composed of a series of
operations, which can be classified into two classes: normal neural network (NN)
operation and graph convolution. The first class of NN operations treats the
feature vectors of all vertices or edges as a feature matrix, and performs tradi-
tional NN operations, such as convolution, full-connected network, or activation
function (e.g. relu, softmax).

At the heart of a GNN model is the process of graph convolution, which differs
from NN operations in that it allows information in the feature of vertices and
edges propagating along the edges to generate new information. Specifically, in
graph convolution, each vertex applies the NN operations to the features of all
its neighbors and the associated edges, and combines the results with its own
features to produce the new feature vector for the next layer. Depending on the
scale and irregularity of the graphs, such convolution could take a significant
amount of time to complete.

Unlike traditional deep learning operations, such as Convolution and Relu,
the graph convolution operations present a huge diversity of computation pat-
terns among different GNN models. As a result, it is impossible to build a single
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Fig. 2. Single Layer Inference Performance of DGL and Pytorch-geometric

hand-crafted kernel for all different GNN models. In other words, the diversity
of GNN models demand a high-level abstraction to represent various GNN mod-
els, while the generality usually leads to bad performance, which is a classical
problem in system design. In the following, we will demonstrate this problem
and present our solution.

2.2 Performance Challenge of Related Works

To understand the inference performance, we have implemented the Graph Con-
volution Network [9] using two open-source GNN systems, DGL and Pytorch-
geometric (or Pytorch in short in this paper). Here we run a forward pass of
a single layer with six different input graphs (which will be presented in detail
later) on a 24-core shared-memory machine, and the sizes of input and output
feature vector for vertices are set to 16. It is worthy to note that only the first
two small graphs can be run on the Nvidia V100 GPU, which is equipped with
32 GB memory. From Figure 2, one can observe that it takes several minutes
for both systems to process large graphs, e.g., twitter graph with over a billion
edges. The root cause of the poor performance lies on the fact that these GNN
systems do not provide the most optimized implementation of graph convolu-
tion. In other words, the systems reuse the APIs offered by the existing deep
learning (DL) frameworks such as Tensorflow, because of the dependence on the
auto-gradient function. However, no current DL frameworks provide optimized
kernels for graph convolution.
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3 GIN

3.1 Bridging the Gap

GNN training systems such as Deep Graph Library (DGL) [20], NeuGraph [15],
and Pytorch-geometric [3], offer a set of graph-operation based APIs to facilitate
the creation and usage of different GNN models. Unfortunately, as we have
discussed earlier, because these systems are built on top of popular deep learning
frameworks such as Tensorflow, the graph convolution relies on the operations
provided by these frameworks, and in turn are often not optimized for GNN
inference.

The main observation of this work is that vertex-centric or edge-centric
APIs that are used in graph analytics systems such as [10, 8, 4, 12,
25], can be utilized to provide a highly optimized implementation of
the GNN inference. In this case, one can leverage a Gather-Apply-Scatter
(GAS) or Bulk-Synchronous-Parallel (BSP) model for high efficiency. The obvi-
ous drawback here is that these systems do not provide a user-friendly interface
that allows users to define the neural network (NN) operations on the vertices
and edges of graph. As a result, the users need to write customized low-level
codes (e.g., user-defined functions) that define the computation on each edge
and vertex, which could be tedious and sub-optimized for some common NN
operations (e.g., matrix multiplication).

In this work, we aim to design a new framework to bridge the gap between
easy-to-use APIs and high-performance implementation of the GNN inference.
Gin consists of three major components: a front end that delivers a user-friendly
progrmaming interface, a back end that utilizes a set of graph processing tech-
niques, and a translator that connect these two.

3.2 The Front End

The front end of Gin is built on top of the dataflow DL framework (e.g., Tensor-
Flow), allowing users to define the computation in GNN models as a high-level
representation. Specifically, it provides a set of message-passing like APIs, in
which user-defined functions (UDFs) are needed to express the NN computa-
tions on tensor data associated with each edge and vertex. In such UDFs, a user
can use the operations on tensor defined in the TensoFlow. Next, the computa-
tion subgraphs will be derived from the UDFs and be fed into the translator to
generate low-level codes.

We will use Graph Convolution Network (GCN) [9] as a concrete running
example to show how Gin works. GCN is one of the most representative GNN
models, which performs a weighted-sum aggregator on all neighbor’s feature in
graph convolution. GCN can be used in application such as node embedding and

classification. Let h
(l)
u denote the feature vector of vertex u at layer l, and W (l)

be the weights matrix that needed to be learned. For each vertex, the feature
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Algorithm 1: One layer of Graph Convolution Network

Input : Graph G(V,E); input feature matrix H(l), H
(l)
v means the feature

vector of vertex v; degree array d for all vertices; weight matrix
W (l); non-linearity σ; neighborhood function N : v → 2V .

Output: New Feature matrix H(l+1) for next layer.
1 Allocate memory for result H(l+1);

2 H ← H(l) ·W (l) ; // Matrix multiplication of feature matrix H and

weight parameters W.

3 for v ∈ V do
4 L← [] ; // Empty list.

5 for u ∈ N(v) do
6 cuv ← 1√

du·dv
; // Normalization.

7 L.add(cuv ·Hu) ; // Message from src vertex.

8 H
(l+1)
v ← Sum(L) ; // Merging the incoming messages.

// Graph Convolution ends.

9 H(l+1) ← σ(H(l+1)) ; // Activation function

10 return H(l+1)

vectors for next layer can be calculated as follow:

h(l+1)
v = σ

 ∑
u∈N(v)

1√
dv · du

h(l)u W (l)

 , (1)

where dv is the degree value of vertex v, N(v) is the neighbor list of vertex v,
1√

dv·du
serves as a normalization constant for edge (v, u), and σ(·) denotes a

differentiable, non-linear activation function (e.g. Relu). According to the tax-
onomy we made at Section 2.1, the activation function and vector-matrix multi-
plication can be implemented as normal operations on the feature matrix of all
vertices outside the graph convolution. Hence, the computation left in the graph
convolution is similar with PageRank algorithm, in which the weighted-sum of
all neighbors’ feature vector is calculated as the result. Algorithm 1 provides an
example implementation for one layer of GCN. Line 3-8 are the codes for graph
convolution, while line 2 and 9 complete the operations of matrix multiplication
and activation function.

Figure 3 shows the definition of GCN using the front end of Gin. Specifically,
four UDFs are provided: Init , Apply , Compute , and Gather . Firstly, the
input data is defined in the Init function, including the feature for vertices or
edges, weight parameters. In the Apply function, users can define the normal
NN operations on the tensor data associated with vertices and edges before
the graph convolution. For GCN, a matrix multiplication of feature matrix and
weight is defined, which corresponds to the line 2 in the Algorithm 1.

The Compute function is defined on each edge of the input graph struc-
ture, giving the information propagation rule along the edge. This function uses
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1 // Data registration
2 Init() {
3 vdata.H = Tensor();
4 vdata.degree = Tensor();
5 weights.W = Tensor();
6 }
7 // Defining the operation on features before graph convolution, corresponding to

the line 2 of Algorithm 1.
8 Apply() {
9 vdata.H = MatMul(vdata.H, weights.W);

10 }
11 // Propagation rule of graph convolution, corresponding to the line 6−7 of

Algorithm 1.
12 Compute(edge) {
13 ret = edge.src.degree ∗ edge.dst.degree;
14 ret = Rsqrt(ret);
15 ret = ret ∗ edge.src.H;
16 return ret;
17 }
18 // Aggregation method of graph convolution and additional operations,

corresponding to the line 8−9 of Algorithm 1.
19 Gather(messages) {
20 ret = Sum(messages);
21 return Relu(ret);
22 }

Fig. 3. Definition of GCN using front end of GIN.

an edge data structure to allow users to access the feature of the source and
destination vertices and edges, and return the message passing to the destina-
tion vertex from the source. In GCN, a normalized value of the feature vector of
source vertex is passed to the destination, corresponding to line 6-7 in Algorithm
1.

Lastly, the Gather function offers users a way of defining the aggregating
method on the messages coming from neighbors. Specifically, this function re-
ceives a parameter messages representing the the array of messages coming from
all the neighbors of given vertex, and users can apply a reduce operation on it to
define the way of combining in-coming messages. Furthermore, some additional
operations can also be used on the result of the reduce operation, such as acti-
vation functions. In the example of GCN, a Sum operation followed by a Relu
is defined on the in-coming messages, referring to the line 8-9 in Algorithm 1.

3.3 The Translator and Back End

The translator is designed to bridge the gap between the high-level abstraction
and high-performance implementation. For inputs, the translator takes the com-
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putation subgraphs used by Tensorflow, representing the NN computation on
each edge and vertex. The job of the translator is to produce the corresponding
functions in the form of low-level codes that will be used by the back end. As
a result, Gin can provide different highly optimized kernels for different GNN
models, such as GCN or G-GCN.

To continue our example, after the GNN model is defined in the front end,
Gin will extract three computation subgraphs from the three UDFs, excluding
the Init . Figure 4 shows the computation subgraphs of GCN. As one can see,
each operation in the subgraphs can be mapped to a statement in the definition
from the front end. Then, the translator takes as input the three computation
subgraphs, analyzes them, and generates the corresponding low-level codes that
should be placed at the appropriate spot of the back end. Specifically, the trans-
lator converts the three subgraphs into three corresponding low-level code blocks,
and for each subgraph, iterate all the operations it contains with the topological
order, allocate the memory for the output tensor and generate the codes accord-
ing to some pre-defined rules. At last, Gin combines the output from translator
with the back end and compile it into a binary kernel that could be used to
execute single layer inference of GCN.

The back end is a high-performance graph processing code template written
in low-level programming language (e.g., C++) and specified for graph convolu-
tion. Instead of letting users define the computation on edges and vertices, the
back end takes the codes generated by the translator as the input; then compiles
with third party libraries to generate an optimized binary. This binary reads
the input tensor data for vertices or edges and yields the resulting tensor data
of the graph convolution. Furthermore, to maximize the parallelism, the back
end uses the OpenMP to dynamically assigns different vertices with various de-
grees to different threads to balance the workload, subsequently achieving better
hardware utilization.

To summarize, the output of Gin is a binary kernel that takes as input the
graph and the feature tensors for vertices and edges, performs one-layer GNN
inference, and outputs the feature matrix for the next layer. It is important to
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Table 1. Graph Datasets (K: thousand, M: million, B: billion)

Dataset Abbrev. vertex# edge# avg.degree

pubmed PD 19.7K 108.4K 5

youtube YT 1.1M 5.9M 6

orkut OK 3M 117.1M 39

twitter-www TW 41.6M 1.4B 34

twitter-mpi TM 52.5M 1.9B 37

friendster FD 65.6M 3.6B 56

note that this kernel can be warped as a operation by DL frameworks such as
TensorFlow.

3.4 Implementation

We implement the Gin framework using Python for the front end and translator,
C++ for the back end. Gin leverages TensorFlow’s intermediate representation
(IR) to express NN computations in the GNN models. On top of Gin, we have
implemented three different GNN models, i.e. CommetNet [19], GCN [9], G-
GCN [17], and evaluated with six different real-world graph datasets as shown
in Table 1. It is worthy to note that although we implemented Gin on shared-
memory multi-core CPU-based system due to its huge memory-capacity, the
whole frameworks can be extended to GPU-based system easily just by providing
another back end implementation that specified to GPU. Current DL frameworks
all offer a way of customizing kernel for Cuda(GPU).

The three GNN models share some common computation properties. For
each layer, the feature matrix for all vertices is multiplied with trained weight
parameters, then the graph convolution takes the features as input to produce
new features for vertices. Finally an activation function is applied on the output
from graph convolution.

The difference of the models lies on the propagation rules of the features
in graph convolution. In CommNet, there is no computation on edge for graph
convolution, thus the feature from the source vertex is simply passed to the
destination vertex. In contrast, GCN computes a weighted sum of all neighbors’
features based on the degree of each vertex, while G-GCN utilizes the gating
mechanism to control the feature propagation in graph convolution.

4 Evaluation

We evaluate GIN on a shared-memory server, which is equipped with dual
2.6GHz Intel Xeon(R) Gold 6126 processors (24 cores in total), 1.5TB mem-
ory. The installed operating system is CentOS 7. In this work, we focus on the
performance of a single layer of GNN, as it is indicative of the overall perfor-
mance. Beside the graph data, all the input data including feature and weight are
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Table 2. Execution time (s) of DGL, Pytorch-geometric and GIN. TMO means time
out of longer than one hour.

Model System PD YT OK TW TM FS Avg.speedup

CommNet
DGL 0.0062 0.34 4.5 58.23 145.22 73.56 10.3×

Pytorch 0.0065 1.24 46.34 451.25 601.47 1064.45 61.55×
GIN 0.0019 0.035 0.61 5.16 5.88 16.4 -

GCN
DGL 0.006 0.28 4.1 61.05 122.34 58.27 8.8×

Pytorch 0.0087 1.27 48.86 435.24 593.22 1079.72 64.81×
GIN 0.0014 0.052 0.51 5 5.6 15.53 -

G-GCN
DGL 0.019 0.35 7.12 80.11 156.4 153.53 4.4×

Pytorch 0.18 12.52 517.93 TMO TMO TMO 126.27×
GIN 0.0029 0.095 2.8 18.93 24.22 51.8 -

initialized to random 32-bit floating point values. We have verified that different
implementations for the same model produce the same outputs.

Table 2 summarizes the execution time of GIN against DGL and Pytorch-
geometric (Pytorch in short). One can see that GIN outperforms the other two
baselines on every graph dataset for every GNN model and is averagely x7.8
and x83 faster than DGL and Pytorch-geometric, respectively. The performance
improvements demonstrate that Gin has generated the implementation which is
more optimal than other two frameworks for various GNN models.

5 Related Works

The growing scale and importance of graph data has driven the development of
numerous graph processing system both on CPU and GPU platforms, including
Pregel [16], GraphLab [14, 13], PowerGraph [4], Gunrock [21], GraphReduce [18]
and SIMD-X [12]. Generally speaking, most of them are written as code template
libraries using low-level programming language (C++), offering vertex-centric or
edge-centric APIs which can be utilized to generate highly optimized kernels for
various graph algorithms [11]. The obvious drawback here is that these systems
do not provide a user-friendly interface that allows users to define the neural
network (NN) operations on the vertices and edges of graph. As a result, the
users need to write customized low-level codes (e.g., user-defined functions) that
define the computation on each edge and vertex, which could be tedious and
sub-optimized for some common NN operations (e.g., matrix multiplication).

On the other hand, DGL [20], Pytorch-geometric [3] and Neugraph [15] warp
DL frameworks (Pytorch and MXNet) with a message-passing programming
inference for users to define, train and execute GNN models. DGL employs sparse
vector matrix multiplication (spmv) to accelerate the graph convolution, while
Pytorch-geometric uses a scatter-gather operations pair. Neugraph proposes a
technique called graph-aware dataflow translation and graph partition to train
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GNN models on huge graphs. However, all these graph learning systems have to
invoke the operations of underlying DL frameworks, which is usually sub-optimal
and may leads to poor performance.

6 Conclusion

In this work, we propose Gin, a novel end-to-end framework for scalable and
high-performance GNN inference. Gin is capable of generating high-efficient in-
ference kernels of GNNs without requiring users writing low-level codes. Specif-
ically, the front end offers a set of easy-to-use APIs for users to define a GNN
model with just tens of lines of codes. Then translator convert the computation
subgraph extracted from the front end to optimized low-level codes and then
compile it with back end to generate the binary, which can be used as a ker-
nel in current DL frameworks. The experiment results show that GIN achieves
significant speedups over existing solutions for GNN inference.
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