
Automating Feature Engineering

Udayan Khurana1, Fatemeh Nargesian2, Horst Samulowitz1, Elias Khalil3, and Deepak Turaga1

1IBM Watson Research Center
2University of Toronto

3Georgia Institute of Technology

Abstract

Feature Engineering is the task of transforming the feature space in a given learning
problem to improve the performance of a trained model. It is a crucial but time-
intensive and skillful process, involving a data scientist or a domain expert. It
is often the key determinant of the time and cost required to build an effective
learner. In this paper, we discuss our system for performing feature engineering in
an automated manner using a combination of exploratory and learning techniques.
We also mention our larger charter of an automated data science pipeline.

1 Introduction

An increasing number of information systems now rely on machine learning based predictive models
to capture and predict behavior, outcomes and likelihoods. We have already witnessed the impact of
using a wide array of learners by systems such as IBM Watson in various domains such as healthcare,
weather, and finance, amongst others. At the core of building, managing, and adapting such predictive
models through their lifecycles is a large amount of manual processing, analysis, tuning, and
experimenting with the data. This involves cleaning data, dealing with missing values, training and
testing the models using machine learning algorithms, engineering the features. The complexity
of resulting combinatorial choices makes it a computationally hard problem. It requires extensive
intellectual capital and human effort, making the process lengthy, bound by limited scalability, costly,
and often prohibitive. In this paper, we describe some of our recent and ongoing work in automating
data science components in order to proliferate its adoption in information systems.

Specifically, we focus on feature engineering or feature construction, which is a time-consuming albeit
crucial step in the data science pipeline. In that respect, a data scientist performs transformations,
compositions or subset-selection on given features in an iterative manner while observing changes in
model accuracy for the desired predictive analysis task. The efficacy of this human driven process is
heavily dependent on the domain and statistical expertise of the individual, and is constrained by the
time to delivery. On the other hand, simple automations for exhaustive transformation and validation
tend to be infeasible due to the inherent combinatorial complexity. For the want of space, we refer to
a few representative related works on FICUS [4], Data Science Machine [5] and Brainwash [6].

2 System Overview

Upon a deeper understanding of what enables a data scientist to successfully perform feature en-
gineering, we realized that it is a factor of two components. First is the wisdom of “what works”
through experience over months and years of working with predictive modeling tasks. Secondly, the
inherent problem solving drive of a trained human to try, observe, and adapt is essential in navigating
through a vast number of possible choices on an unknown data and unforeseen behavior. Our system
consists of two main components as shown in Figure 1: the Explorer and the Learner-Predictor.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

The Explorer [1] navigates through various feature construction choices in a hierarchical and non-
exhaustive manner, while progressively maximizing the accuracy of the model through a greedy
adaptive exploration strategy. A Transformation Tree is used to systematically enumerate the space
of different data transforms (such as logarithm, frequency, z-score, temporal aggregation, and so on)
that can be applied in sequence to a dataset, while search or pruning strategies are used to effectively
find the optimal node in the tree. It is easily extensible to add new transform functions to the system.
It works in a domain independent manner, yet enabling a domain expert to influence the search
through specification of constraints relevant to the dataset.

The Learner-Predictor [3] generalizes the impact of different transformations on a range of
historical datasets, and learns to predict the most suitable transformation for each feature in a given
dataset. The generalization across feature vectors of different sizes and representing different quanti-
ties, however, is non-trivial. Moreover, different datasets belong to different domains and represent
different learning targets. We canonicalize feature representations using a novel way to represent
any feature vector using a method called imagification, which consists of normalizing, binning and
histogramming. Through meta-learning a predictive model on such feature representations, we are
able to predict the most suitable transform for each feature independently. The results show a good
accuracy of prediction and fast execution time. When put together, the Learner-Predictor quickly
provides recommendations for applying certain transformations. This is a relatively inexpensive step
which helps the Explorer narrow down or prioritize its search space. The Transformation Tree in
the explorer produces several intermediate transformed datasets and for each of those, it reaches out
to the predictor for updating transformation recommendations or priorties.

Automating the Data Science Pipeline. While feature engineering is a critical and perhaps the
most time consuming step in the data science pipeline, other steps such as model selection, data
cleaning, data completion, are also essential. In the larger scope of this project, we work on a holistic
automation of the data science process. For instance, the efficacy of engineered features also depends
on the type of model being employed. Our systems for feature engineering [1] and model selection
[2] using incremental sampling and estimation, work in tandem to solve the joint problem of finding
the best model and feature set. Finally, the transformation tree extends to test the impact of various
data preparation choices similar to data transformations in a performance driven manner.

 
 

Explorer

Fig. 2. In a transformation tree, a node corresponds to a dataset (root is the input dataset, rest are transformed) and an edge to a transform. In the given
example, feature engineering is performed for a regression dataset using four transforms and results in an increases in accuracy from 0.392 to 0.522.

precipitation quantity prediction from NOAA4; the last one
is a client proprietary dataset (regression) about predicting
energy consumption. We observe accuracy gain for different
datasets, even for the “Svmguide1” dataset which has a very
high accuracy to begin with. All experiments were run on a
single desktop machine within a budget of 1 minute, except
the weather dataset, whose budget was 4 minutes.

IV. DEMONSTRATION PROPOSAL

Cognito is simple and intuitive to operate. A sample run
can be seen here5. The homepage expects the user to upload
a valid ARFF file, upon which the system provides a preview
of the dataset. The user can edit any feature tags at this point,
go back and upload a different file, or proceed to feature
engineering. At this stage, the user is presented with a default
list of parameters for the run, such as the tree bounds, model(s)
to test, transformations to choose from, whether to use feature
selection or not, time budget for the run, amongst others. The
user may modify the configuration, and upon launching the
process, the growing tree is visible in real time on the screen.
At any time, the user can click the GetResult button to see
the composition of the data version with the highest accuracy
so far. The user is presented with the lineage of each feature
in the resulting dataset starting from the original dataset.

4National Oceanic and Atmospheric Administration: http://www.noaa.gov
5Using Cognito: https://www.youtube.com/watch?v=hJlG0mvynDo

Demonstration Plan: During the conference, we propose to
demonstrate the efficacy of Cognito by letting the users work
with a dataset of their choice (one that is publicly download-
able). Additionally, we will also provide the datasets listed
in Table II-B. We would emphasize on the following aspects:
(a) interpretation of the transformed features; (b) impact of
search strategy in finding the best result; (c) impact of the
choice of model (including automated model selection option)
to the final result; (d) utility of user annotation. Finally, we
plan to use this exercise to solicit feedback about the system
to further improve the interactivity, the search strategy, the set
of transforms such that we improve its usability.

REFERENCES

[1] O. Dor and Y. Reich. Strengthening learning algorithms by feature
discovery. Information Sciences, 2012.

[2] W. Fan et al. Generalized and heuristic-free feature construction for
improved accuracy. In SDM, 2010.

[3] J. M. Kanter and K. Veeramachaneni. Deep feature synthesis: Towards
automating data science endeavors. In IEEE DSAA, 2015.

[4] U. Khurana, S. Parthasarathy, and D. S. Turaga. READ: Rapid data
exploration, analysis and discovery. In EDBT, 2014.

[5] S. Markovitch and D. Rosenstein. Feature generation using general
constructor functions. Machine Learning, 2002.

[6] A. Sabharwal, H. Samulowitz, and G. Tesauro. Selecting near-optimal
learners via incremental data allocation. In AAAI, 2016.

[7] P. Sondhi. Feature construction methods: a survey. 2009.
[8] D. K. Wind. Concepts in predictive machine learning. Master’s thesis,

Technical University of Denmark, 2014.

correlation between features and the target. The more
pronounced this correlation is the better the chance that
a model can achieve a better predictive performance.
On a per feature basis we try to determine what
transformation — if any — can improve the correlation
with the given target - independent of the other features.
We represent both the feature and target values at
the same time to capture relationships between them
that can then be used to reveal the suitability of a
transformation.

Although neural networks have been successful in
learning representations for image and speech data [],
existing representation learning approaches are not
straightforward to be applied in the context of raw nu-
merical data that most datasets contain. The chal-
lenges lie mainly in the vast size di↵erences (e.g., from
10 to millions) and the range of feature values. While
approaches such as recurrent and convolutional neural
networks can deal with varying input size, we aim at
determining a fixed sized representation that can cap-
ture the relationship between feature values and target
values. To characterize datasets, previous approaches
have used various hand crafted meta-features, includ-
ing simple, information-theoretic and statistical meta-
features, such as statistics about the number of data
points, features, and the number of classes, or data
skewness, and the entropy of the targets [20, 21, 2].
Very few meta-features, in the literature, capture the
correlation between features and a target. Performing
fixed sized sampling, e.g., 1000 samples, of feature val-
ues is another representation approach. Samples ex-
tracted from feature and target columns are required to
reflect the distribution of values in both feature and tar-
get columns. While stratified sampling solves the issue
for one data column, it does not for multiple ones [].
Feature hashing has been used to represent features of
type string as feature vectors []. Although feature hash-
ing can be generalized for numerical feature values, it is
not straightforward to choose distance preserving hash
functions that hash feature values within a small range
to the same hash value. Given that in our setting, fea-
ture values are in various ranges, it is also challenging
to select the number of hash functions.

We represent feature values using a method called
imagification which is inspired by binning and histogram
methods. To have all feature values in the same
range, we normalize them to a predefined range [lb,
up]. Given a fixed number of bins, r, the range [lb, ub]
is partitioned into b disjoint equi-width bins of width
w = up�lb

r . Assume, the range [lb, up] is partitioned
into bins {b0, . . . , br�1}, where the bin pi is a range
[lb + i ⇤ w, lb + (i + 1) ⇤ w). The function B(vi) = bk

associates the value vi of feature V to the bin bk.

f1 class

3 a
0 a
1 a
… a
2 b
1 b
… b

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

−10

−10 10

10 Transformation
𝒕𝟏’s Classifier

APPLY

DO NOT
APPLY

Figure 2: An example of feature representation using
imagification method.

In other words, function B partitions feature V to b
bins. Then, function F (bk) = fk returns the number
of feature values, fk, that are associated to bk. Finally,
I(bk) is the normalized F (bk) across all {b0, . . . , br�1}
bins, which is F (bk)P

0�i<r F (bi)
. If we assume each bin is

pixel, the representation of feature values is an image
where the intensity of a pixel is I(bk). Normalizing and
binning provide a fixed size representation of feature
values and representing each bin with the notion of
intensity captures the distribution of feature values in
the same bin. So far, we described how we build a
fixed size representation of feature values that reflect
the distribution of values. In order to represent the
relationship between feature values and target, we group
the values in a feature with respect to target values
and represent a feature by concatenating the separate
representation of feature values belonging to each class.
For instance, since we assume a binary classification
task, feature values are partitioned into class 0 and
1. Then, each class partition is represented using
imagification method. Figure 2 shows an example of
the representation of a feature value.

4.2 Generating Training Samples for Learning
Feature Engineering In this section, we describe in
details how transformation classifiers are trained such
that they can generalize knowledge of the usefulness of
transformations across data sets. In order to decide
whether applying a transformation on a feature leads to
improvement, we evaluate a selected model on the fea-
ture and its target as well as the transformed feature and
target. If by applying a transformation the model per-
formance improves, the feature and target are positive
training samples for the classifier corresponding to the
transformation. Otherwise, the feature and target are
considered as negative training samples. Note that the
generated training samples are model-dependent, mean-
ing a transformation might be necessary found useful for
a feature when two di↵erent learning methods (such as
Naive Bayes and Logistic Regression) are used. Feature
are extracted from datasets of various domains. Algo-
rithm 1 explains in details how we generate training

Learner-Predictor

D (Dataset)

P(Predictions), D

D’, M
D’Result

Next Iteration
End?

Yes No

1

2

3
4

Input

Hierarchically enumerate the space of  
transformation sequences, and use search  

 and pruning to find the optimal point.

5 Feedback to  
update learner

Over a period of time, learn correlations  
between data and actions taken.  

Make suggestions for a given dataset.

Figure. We perform data science tasks such as feature engineering, model selection and
data correction using a two-phase, iterative process through (a) making predictions based
on past experience; and (b) exploring and optimizing the space of options - to produce a

transformed dataset and suggest the most appropriate choice of models.

Figure 1: We perform automated feature engineering using an iterative two-phase process through (a)
Learner-Predictor providing transformation hints based on past experience; and (b) Explorer
navigating through space of weighted options to provide the optimal sequence of transformations.

References

[1] U. Khurana, et al. Cognito: Automated Feature Engineering in Supervised Learning. ICDM, 2016.

[2] A. Sabharwal, et al. Selecting Near-Optimal Learners via Incremental Data Allocation. AAAI, 2016.

[3] F. Nargesian, et al. Learning Feature Engineering. Under review at SDM, 2017.

[4] S. Markovitch, et al. Feature generation using general constructor functions. Machine Learning, 2002.

[5] J. Kanter, et al. Deep feature synthesis: Towards automating data science endeavors. In IEEE DSAA, 2015.

[6] M. Anderson, et al. Brainwash: A Data System for Feature Engineering. CIDR, 2013.

2

	Introduction
	System Overview

