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Abstract

Detecting anomalous activities from time series data is critical for enhancing avail-
ability and security of systems in many domains. Streaming data usually contains
complex dynamic patterns, which complicates the learning process. In this paper,
we present a nonparametric Bayesian method AOTS to help automating the model
learning for anomaly detection in streaming time series. The method learns the dy-
namics of anomaly-contaminated time series with submodular optimization based
kernel selection to effectively adapt to the data and identify potential anomalous
events. Experiments on real data show encouraging results.

1 Introduction

With the rapid growth of Web, mobile and Internet of Things (IoT) systems, anomaly detection in
time series [1, 4, 2] has attracted increasing interests to improve the availability, performance, and
the overall service experience of the systems. In this paper, we propose a flexible nonparametric
Bayesian method AOTS for anomaly detection in time series data. The method models time series
with Student-t processes (TPs) [9] with time t as predictors. The heavy-tailed distributions of TPs
provide robustness against anomalies to better capture the normal patterns. Additionally modeling
observations as a function of time t allows for continuous time processes, and can resolve the problem
of discretizing time into evenly spaced intervals. On the other hand, time series in the real-world
systems usually involves complex dynamic patterns, which makes automatic kernel selection and
construction critical in the learning process. Automatic Bayesian covariance discovery [7, 3] is very
helpful for addressing this problem. We develop a kernel selection method based on submodular
optimization to effectively adapt to the data and reduce manual efforts in model construction. Initial
experiments on real data demonstrate promising results.

2 Automated Time Series Anomaly Detection

Assume that there is a time series y = {y1, y2, . . .} of an infinite number of observations. We model
the time series as a function yt = f(t) (shortened as ft) with time t as predictors. The modeling
method can avoid introducing anomalies into predictors like the autoregression based methods
do, thus potentially reduces the complexity of modeling anomalies in time series. Additionally
the continuous time processes can resolve the problem of time discretization and introduce extra
flexibility.

The function f itself is unknown. Here we assume that f is random and can be arbitrary mathematical
form without requiring manual definition in advance. It will be drawn from a function space with a
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robust nonparametric distribution, Student-t process (TP) [9]. Formally the generative process is:

ζ|ν, k ∼ IWP(ν, k); f |µ, ζ ∼ GP(µ , (ν − 2)ζ)

That is, we first draw a kernel function ζ from an inverse Wishart process IWP(ν, k) with degrees of
freedom ν > 2 and base kernel k. Then the functions (i.e. the time series) are drawn from a Gaussian
process GP(µ, (ν − 2)ζ) with the kernel ζ . µ denotes mean function, and is often set as zero without
loss of generality. The TP has one more level than the GP, thus the sampled time series can be more
flexible to capture the complex patterns in time series.

The base kernel k plays an important role, especially when dynamics of time series are complicated
[7, 3, 8]. To automate model construction of Student-t process with less manual intervention, we
develop a greedy forward-selection method inspired by submodular optimization [5, 6]. In particular,
there are a finite set Ω of kernels (e.g. linear, squared exponential, periodic kernels) and their
multiplicative compositions (e.g. linear × periodic). Here we only consider multiplication of two
kernels due to the possible overfitting problem. Additionally we have a set function z: 2|Ω| → R,
which is the minimal negative log likelihood of the time series (with the optimal kernel parameters θ).
Then the model construction problem is cast as: select a subset A ⊂ Ω minimizing the negative log
likelihoodNLL of the observed time series. Note that, Student-t process is not closed under addition.
Thus we incorporate all the selected kernels into the base kernel of the inverse Wishart process, rather
than a sum of several individual Student-t processes. The selection method is shown as Alg. 1.

Algorithm 1: Model construction of the AOTS method
Input :Ω (candidate kernels), y (observed time series), τ (stop condition, default 0.01)
Initialization: A = ∅, K = None, k=None, r=1.0;
while r > τ do

A← A ∪ k, Ω← Ω \ k, K ← K + k ;
Find a kernel k ∈ Ω that offers minimal NLL together with the selected kernels A. Its
hyperparameters θ are optimized with gradient descent method. The NLL and the derivatives
are computed as follows:
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r = (NLL(A) −NLL(A∪k))/NLL(A) ;
Output :Selected kernels A and their hyperparameters

K = LLT (Cholesky decomposition), α = LT \ (L \ y), and ν̂ = log(ν − 2). ψ is the digamma function.

Given the constructed model, we can estimate the normality of the time series in the near future
to identify the anomalous events. Technically a predictive distribution is computed based on the
learned model and the observed time series, then the anomaly is detected with its z score. For
efficient computation, we develop rank one update, as the time series is often observed sequentially.
In particular, the predictive mean m∗ and variance var∗ at time n + 2 given the new observation
ynew at time n+ 1 and previous observations y are computed as:
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ãnew = (ynew − ˜̀T
newa)/˜̀

new,new; L←
[
L 0

˜̀T
new

˜̀
new,new

]
; a←

[
a
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b = L \ k̃∗; β = aTa; m∗ = bTa; var∗ =

ν + β − 2

ν + n− 1
(k∗,∗ − bTb),

where k̃new is the covariance between ynew and y, and k̃∗ is the covariance between fn+2 and
[y, ynew]T . knew,new and k∗,∗ are variances of fnew and fn+2.
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3 Experiments and Conclusion

We evaluate the AOTS method using the airline passenger data with randomly added outliers. The
first 120 time steps are training data to learn the models, and the rest is used to test performance
of anomaly detection. The experimental results are reasonable and illustrated as Fig. 1. The left
panel shows the predicted time series and the detected anomalies. The middle panel is the iteratively
selected kernels with the gradually decreasing negative log likelihood. One can find that the returns
are diminishing. To give intuitions of the selected kernels, the right panel visualizes sample time
series drawn from the corresponding Student-t processes. The results demonstrate the superiority of
the proposed nonparametric Bayesian method with automatic kernel selection in anomaly detection.
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Figure 1: Detected anomalies from the airline passenger data.
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