Towards a Unified Query Language
for Provenance and Versioning

THE UNIVERSITY OF

Amit Chavan Silu Huang Aaron Elmore Samuel Madden

Amol Deshpande B:CHYERLEICIMERVEIED

DATAHUB: A COLLABORATIVE
HOSTED DATA SCIENCE PLATFORM

The one-stop solution for &1 = |__RawFiles _
collaborative data science and ~
. 65 [Ingest (Import)
dataset version management e
% [Database System]

~_~

‘jl [Fork, Branch,]
Merge
J'L(Sharing]

" Collaboration

Version
[Management] L

~
http://data-hub.org o) | QueryLanguage |

~—~
0\ [Integrate / Visualize / Other Apps]

DATAHUB: A COLLABORATIVE
HOSTED DATA SCIENCE PLATFORM

* a dataset management system —
import, search, query, analyze a large

Client DataHub

number of (public) datasets Applcations || Notebook

query
builder

ingest || vizualize

lll: Language Agnostic Hooks

ll: Native App Ecosystem

* a dataset version control system —
branch, update, merge, transform
large structured or unstructured
datasets

I: Versioning API and Version Browser

|

|

|

|

|

|

|

|

|

|

|

|

— :
v :
|

Versioned Datasets, :
|

|

|

I

|

|

|

|

|

|

|

Version Graphs,
Indexes, Provenance

* an app ecosystem and hooks for
external applications (Matlab, R,

v
DataHub: A Collaborative Data Analytics Platform

|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
:
|
| Dataset Versioning Manager
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

iPython Notebook, etc) DataHub

Architecture

CHALLENGES IN DATASET

VERSION MANAGEMENT

Collaborative data science projects end
up in dataset version management hell

- Many private copies of the datasets =
Massive redundancy

- No easy way to keep track of dependencies
between datasets

- Manual intervention needed for resolving
conflicts

- No efficient organization or management of

OITCITETS 198.900X

Untitled 241.doc |
Untitled 138 copy.-docx
Untitled 138 copy Z.docx
Untitled 139.docx

Untitled 40 MOM ADDRESS. jpg
Untitled 242.doc

Untitled 243.doc

Untitled 243 IMPORTANT. doc J

o
Y onmyen
:;})

datasets

- No way to analyze/compare/query versions

PROTIP: NEVER LOOK IN SOMEONE.
ELSE’s DOCUMENTS FOLDER.

Courtesy: XKCD

| WHAT ABOUT GIT/SVN/... ?

Analogous to management of source code
before source code version control!

SUBVERSION \Q\ ‘
Many issues with directly using GitHub etc.. @Q
- Cannot handle large datasets or large # mercuria

of versions (VLDB 2015) e B E

- Datasets have regular repeatin ;[——
structure T e % | s
- Querying and retrieval functionality is m ”:ff"'""’f:ﬁ“if‘?"" /[

Temporal databases only support a linear
chain of versions

guest should n¢
Revert "guest use
guest user should
setup fixures for eve
update config/newreli
1.1 Merge branch 'master
reproduced #1691 i
initialize a cucumbe

=5 T |

add a minimal event
(" downgrade rails versit

NEED A RICH LANGUAGE FOR
QUERYING AND RETRIEVAL

Querying in traditional VCS largely revolves around single
version and metadata retrieval

No way to specify queries like:

* identify all versions derived from version A that satisfy
property P

* identify all predecessor versions of version A that differ from it
by a large number of records

* rank a set of versions according to a scoring function

* find the version where the result of an aggregate query is
above a threshold

* find parent records of all records in version A that satisfy
certain property

GOALS

To fully realize the DataHub vision, need a language that can:

* support all existing VCS API

* allow working with both versions and data seamlessly

* navigate the ad-hoc derivation graph of versions

* allow declarative querying of the data to the extent possible

Why a new language?

* Temporal query languages (e.g., TQuel) only work with a linear
history of versions

* SQLisill-suited to traversing a graph structure, and has a
cumbersome aggregate syntax

* Several languages for workflow systems, but often quite
specific to the platform

HELLO VQUEL

retrieve “Hello World”

Generalization of Quel — a tuple calculus-based language
developed for INGRES

Chosen primarily because of cleaner syntax

VQuel combines:

* full-fledged relational features and powerful aggregate
constructs from Quel

* syntactic features from GEM, SQL, and path-based query
languages
* iterator-based access to both versions and data items

NOTATION & DATA MODEL

“version”: immutable and consists of one or more datasets (files,
relations) that are semantically grouped together

New versions created through the application of transformation
programs or updates to one or more existing versions.

Version-level provenance is captured in the “version graph”

lllustration of a version graph

NOTATION & DATA MODEL

Queries written against a Conceptual Hierarchical Data

Model
Relation Column
. , n
. Ver5'°“. ,[name string >'mame string
id string >'columns {Column} ‘type Type
commit msg text ‘tuples {Record} is_pk boolean

‘creation ts timestamp

‘author Author
‘relations {Relation}
‘files {File}
‘parents {Version}
‘children {Version}

‘changed boolean

File

‘full path string

‘3

»'records {Record}
‘size long
‘changed boolean

Record

‘3

>lattr 1 type 1
attr 2 type 2

‘parents {Record}
‘children {Record}

| ITERATORS AND PREDICATES

Example 1: What commits did Alice make after January 01,

20157
V is an iterator over
l all the Versions

range of V is Version :
retrieve V.all Predicates are used to

where V.author.name = "Alice" and restrict the results
V.creation ts >= "01/01/2015" returned

NESTED ITERATION

Example 2: Show the history of the tuple with employee id
“e01” from Employee relation.

R is an iterator over

relations in a Version

range of V is Version E is an iterator over
range of R is V.Relations fuplesinalRelation
range of E is R.Tuples

retrieve E.all, V.commit id, V.creation_ts
where E.employee id = “e0l1” and
R.name = “Employee”
sort by V.creation_ts

AGGREGATES

Example 3: Among a group of versions, find the version containing most
tuples that satisfy a predicate. For instance, which version contains the
most number of employees above age 507

Aggregates can be used in both

retrieve and where clauses

range of V is Version
range of E is V.Relations(name = "Employee").Tuples
retrieve into T (V.id as id,
count(E.id where E.age > 50) as c)
retrieve T.id
where T.c = max(T.c)

Restricts the tuples being
considered in the counting

Evaluated once, used as

a constant thereafter

“retrieve into” implicitly
defines an iterator

| VERSION GRAPH TRAVERSAL

Example 4: Find all versions within 2 commits of “v01” which
have less than 100 employees.

N() returns the neighbors of
a version in the version

range of V is Version(id = "voOl1") graph
range of N is V.N(2) <
range of E is N.Relations(name = "Employee").Tuples

retrieve N.all
where count(E) < 100

AND MORE...

See paper for:

» Additional constructs for aggregates

* Partitioned aggregates — GROUP BY clause

* Joins across versions

* Additional constructs to traverse the version graph

* Querying fine grained provenance

THE ROAD AHEAD

Extensions
- Include user defined functions — e.g., custom “diff” functions for

two versions
* Additional graph traversal operators

Engagement with users to refine the constructs

Implementation Challenges

Data is stored in a compressed
fashion, to exploit overlaps
between versions

Need new query execution
and optimization strategies

Version graph can become
very large in a “dynamic
update” environment

Need scalable methods to
handle the version graph

| MORE ABOUT DATAHUB...

* Principles of Dataset Versioning: Exploring the Recreation/Storage Tradeoff.
Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya
Parameswaran.
41st International Conference on Very Large Data Bases (VLDB), 2015.

* Collaborative Data Analytics with Datahub (Demo).
Anant Bhardwaj, Amol Deshpande, Aaron Elmore, David Karger, Sam Madden,
Aditya Parameswaran, Harihar Subramanyam, Eugene Wu, and Rebecca Zhang.
41st International Conference on Very Large Data Bases (VLDB), 2015.

» DataHub: Collaborative Data Science & Dataset Version Management at Scale.
Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande, Aaron J.
Elmore, Samuel Madden, Aditya Parameswaran.

Conference on Innovative Database Research (CIDR), 2015. o~

WEBSITE UNDER CONSTRUCTION

THANK YOU

