Language-integrated
provenance in Links

Stefan Fehrenbach
James Cheney

TaPP 2015
Edinburgh, Scotland
July 9, 2015

Research supported by EU project DIACHRON
and a Google Research Award



Motivation

e Lots of work on how to record, store,
query provenance within a single system

e database, WFMS, OS, ...

e Much less on how to program with that
provenance

e especially in systems spanning multiple
"layers"

e such as Web applications...



Scenario /

e New, extra-nifty pWatch just released

e Would like to monitor comments

e aggregated from across the Web into multiple tables

e Would like to know:

e where did this comment come from?

e 1inspect provenance to group/aggregate comments
by source?

e Or maybe: delete negative comments? :)



This paper

Initial steps towards language-integrated
provenance

Goals:

e Simplify programming with provenance in web applications

e Provide strong guarantees for "provenance safety"

e e.g.cannot forge or (accidentally) lose provenance
Initial focus: where-provenance for DB queries
Building on language-integrated query (LINQ)

e in context of the Links web/DB programming language



Basic Links program

var top_comments = table "fop_comments” with
(id: Int, text: String,
origin_table: String, origin_column: String, origin_row: Int);

sig watch_comment : ((text:String, origin_table:String|_)) -> Bool
fun watch_comment(c) {
c.origin_table == "watch” || c.text =~ / *pWatch.+*/

}



Basic Links program

var top_comments = table “top_comments” with
(id: Int, text: String,
origin_table: String, origin_column: String, origin_row: Int);

sig watch_comme
fun watch_comme
c.origin_table ==’

}

: ((text:String, origin_table:String|_)) -> Bool

() 1

atch” || c.text =~ /. *pWatch. */

~
Aggregates source data from

several tables;
origin_* columns store view
or update "provenance”

& J




Basic Links program

sig render_quote : (String) ~> Bool
fun render_quote(c) {
<li>
<blockquote>{stringToXml(c) }</blockquote>

</li> }

sig quotes_list : () ~> Xml
fun quotes._list() {
var comments = query {
for (c <-- top_comments)
where (watch_comment(c.text))
[(text = c.text)]

}

<ul>{for (c <- comments) render_quote(c.text)}</ul>

}



Basic Links program

sig render_quote : (String) ~> Bool
fun render_quote(c) {

<li> 4 A
<blockquote>{stringToXml(c) }</bl Queries can use

</li> } :
(some) Links
sig quotes_list : () ~> Xml . :
fun quotes_list() { fUﬂCthnS,

var comments = query {

for (c <—— top_comments) _ this will still yield a

where (watch_comment(c.text)) : '
[(text = c.text)] . Slngle SQL CIUEI‘)’.

}

<ul>{for (c <- comments) render_quote(c.text)}</ul>

}

J




Basic Links program

sig render_quote : (String) ~> Boo
fun render_quote(c) {
<Ii>

<blockquote>{stringToXml(c) }</blockquote>

</li> }

sig quotes_list :
fun quotes._list() {
var comments = query {
for (c <-- top_comments)
where (watch_comment(c.text))
[(text = c.text)]

}

<ul>{for (c <- comments) render

() ~> Xml \

~

Want to add a "delete
this comment from
source table" button...

}

- J




What 1s Links?

e A multi-tier programming language for
the Web

4 )

Links program




What 1s Links?

e A multi-tier programming language for

tbrﬂA[e%
ﬂutomatically g A

partitioned to Links program
run safely on | : _
\clifferent tieg& v )
Browser * i : |
(HTML/ [ > App | o DB
s iy (SQL)

\_/
'v
W\
- M H <

2

% PEE

ORACLE




[inks overview

] normalization

| Links | f saL




[inks overview

type checking
Q rewriting normalization
[ PLinks } ){ Links } - { SQL J

This paper



Why Links?

Most DB programming involves generating "query
strings”

e often dynamically

Hence, interacting with a prov-enabled database
requires pervasive changes to code and types

In LINQ-like setting, structured query
representation is available at run time already

Hence, hope that query transformations (and
associated type system changes) can be automated



Background

C‘x|(€1762)‘€-i|€1—|—€2‘61:62 |
if e then e else e
D] eiUea|{e} | for (x + e) returne’

b € {int,bool,...} | t1 X ta | {t}

e Nested relational calculus query
expressions

e embedded in Links (LINQ similar)



Where-provenance

[Buneman, Khanna, Tan 2001]

e Where-provenance: tracks where data
in output comes from

R S R JOIN S




Where-provenance

[Buneman, Khanna, Tan 2001]

e Where-provenance: tracks where data
in output comes from

R S R JOIN S
a5 c [l c p [ee—
| T2 12+ 2
| 1212 ]2
| | 2 | 3 2 | 2 12123
21314 2 | 3




Where-provenance

[Buneman, Khanna, Tan 2001]

e Where-provenance: tracks where data
in output comes from

R S RJOIN'S
S B T
- A B C D
| “2- i 511 | 5
| T727° ot =1 [ 3
2 13| 4 2 13+




Where-provenance
translation (simplified)

[Buneman, C., Vansummeren 2008]

T(b) =bxtag T(mixme)=T(n)xT(re) T{1}) ={T(1)}

P(0
P({e}

P(for (x < e) return e’

X

(¢, 1)
(P(e1)-1 op Ple2)-1, 1)

op € {+,=,...}
P(e).1

(P(e1), P(e2))

if P(e).1 then P(e1) else P(e2)
0

P(el) UP(eg)

1P(e)}

for (x < P(e)) return P(e’)

Key property: P(e) is flat if e is
(hence compiles to a single SQL query!)



Embedding into
Links

e Added type constructor Prov(-)

® Prov tis "atwith associated provenance"

e prov: Provt— (relation:String,column:String,row:Int)

e data:Provt—t

e We also allow prov annotations on table definitions

e These define what data is considered "provenance" for each
field

e This can often be synthesized from existing data (e.g. keys/
oids)

e Can be different for different tables



PLinks

var top_comments = table “top_comments” with
(id: Int, text: String,
origin_table: String, origin_column: String, origin_row: Int)
prov (text = fun (c) { (relation = c.origin_table,
column = c.origin_column,
row = c.origin_row) });

sig watch_comment : (Prov String) -> Bool
fun watch_comment(c) {

(prov c).relation == "watch” || data c =~ /. *pWatch.*/

}

sig delete_quote : (Prov String) ~> ()

fun delete_quote(c) server {
delete (r <-- table_from_name((prov c).relation)
where (r.id == (prov c).row) }



PLinks

sig render_quote : (Prov String) ~> Bool
fun render_quote(c) {
<[>
<blockquote>{stringToXml(data c) }</blockquote>
<button |:onclick="{delete_quote(c)}" >delete</button>

</li> }

sig quotes_list : () ~> Xml
fun quotes_list() {
var comments = query {
for (c <-- top_comments)
where (watch_comment(c.text))
[(text = c.text)]

}

<ul>{for (c <- comments) render_quote(c.text) }</ul>

}



PLinks

sig render_quote : (Prov String) ~> Bool
fun render_quote(c) {
<[>
<b|ockquote>{str|ngToXmI(data c)}</b|ockquote>

<button |:onclick="{delete_quote(c) j/—

<>} Adding the delete

sig quotes_list : () ~> Xml button doesn't
fun quotes_list() {
var comments = query { require changing the

for (c <-- top_comments)

where (watch_comment(c.text)) <= high-IGVEI query

y (s cted) structure!

<ul>{for (c <- comments) render_quoty,

}



Types

PR = (relation: String, column: String, row: Int)

PROV DATA
M : Prov o M : Prov o
prov M : PR data M : o

TABLE
vel, pe P, PCI 0; base type fp:<l¢:0¢>—>PR

. Provo; 1€ P -
table ¢ with (I; : 0;) prov (I, = fp) <l73 : { i & P>

o)




Translation to plain
Links

sig watch_comment :
((data: String,

prov: (relation: String, column: String, row: Int))) -> Bool
fun watch_comment(c) {

c.prov.relation == "watch” || c.data =~ /. *pWatch. */

}

query {
for (c <-- (for (c_prime <-- top_.comments)

[(id = c_prime.id,
text = (data = c_prime.text,
prov = (fun (c) { (relation = c.origin_table,
column = c.origin_column,
row = c.origin_row) })
(c_prime)))]))
where (watch_comment(c.text))
[(text = c.text)]

(this part is based on where-prov translation
from [BCVO08] + inlining table prov definition)



Normalized SQL
query

SELECT
c.text AS text_data,
c.origin_column AS text_prov_column,
c.origin_table AS text_prov_relation,
c.origin_row AS text_prov_row
FROM top_comments AS c
WHERE c.origin_table = 'watch’ OR c.text LIKE "%pWatch%'’

(this part relies on query translation
already supported by Links)



Normalized SQL
query

4 )
Sort of obvious in

SELECT ,
c.text AS text_data, this case, but less
c.origin_column AS text_prov_column, so for complex
c.origin_table AS text_prov_relation, .
c.origin_row AS text_prov_row < queries y

FROM top_comments AS c
WHERE c.origin_table = 'watch’ OR c.text LIKE "%pWatch%’

(this part relies on query translation
already supported by Links)



(Desired) properties

e Type-safety (as usual)

added features (extra provenance "plumbing") also
translate to type-safe Links code

e Provenance-safety: a value of type Prov t really does
have "valid" provenance

Provenance cannot be forged!

No special "null" / bottom value needed for "no
provenance' either

Provenance isn't discarded "by accident” (have to use
data to extract raw data)



Current status /
related work

e Preliminary implementation of basic translation

able to generate queries

does not execute them or return results yet

e To do next: implement Prov type, operations, and rest of
translation

Using data extractor is a little painful - can we infer it?

e Longer term: consider other forms of provenance (why, how)

maybe using shredding to deal with set-valued annotations [C., Lindley,
Wadler SIGMOD 2014]

or adapt other existing translations (Perm, [Alonso & Glavic 2009])

Also: where-provenance for updates? (cf. [Buneman, Chapman, C.
2006], [BCV08])



Conclusions

e A typed/FP cross-tier language allows greater
hope for automation, satety analysis/checking

e This is work in progress

e but it seems like a promising way to gain
experience with programming with provenance

e Of course, Links is a research prototype with
O(1) users...

e Also plan to look into transplanting ideas to other
settings (e.g. LINQ in C#, F#, Scala? Python!?)



