
Typing Massive JSON Datasets

Dario Colazzo ∗

Université Paris Sud - INRIA
colazzo@lri.fr

Giorgio Ghelli
Università di Pisa
ghelli@di.unipi.it

Carlo Sartiani †

Università della Basilicata
sartiani@gmail.com

Abstract
Cloud-specific languages are usually untyped, and no guarantees
about the correctness of complex jobs can be statically obtained.
Datasets too are usually untyped and no schema information is
needed for their manipulation.

In this paper we sketch a typing algorithm for JSON datasets.
Our approach can be used to infer a succinct type from scratch for
a collection of JSON objects, as well as to validate a dataset against
a human-designed type and, if necessary, to adapt and improve this
type.

1. Introduction
Cloud computing is a novel and very popular computing paradigm
that aims at building extremely scalable and elastic applications
working on huge datasets. This paradigm is based on the idea of
using hundreds or thousands of low-end, unreliable, and cheap ma-
chines connected through standard network switches. The most
popular incarnation of this paradigm is the Map/Reduce architec-
ture [8], first introduced by Google and then adopted by companies
like Facebook and Amazon.

While cloud computing applications can be written in stan-
dard programming languages like Java or C++, there has been
much work in the development of special-purpose languages for
the Cloud, such as Pig Latin [9] or Sawzall [10], that hide low-level
details.

In cloud-specific languages types are usually optional, and pro-
grams may be deemed as correct at static time even if type errors
are present: this may happens, for instance, when Pig Latin pro-
grams contain type casts. Hence, only weak guarantees about the
correctness of complex jobs can be obtained at static time. This
is particularly frustrating when multiple jobs form a single com-
plex workflow processing huge datasets, as happens in clustering
and machine learning computations. In this case, a statically unde-
tected mismatch between the output of a job Ji and the input of the
next job Ji+1, or between the output returned by Map worker and
the expected input of reducers, can lead to incomplete and/or er-
roneous results, hence wasting large amounts of CPU time. These
mismatches are hard to detect for the programmer, as she usually
has to manually inspect the logs of Map and Reduce workers.

It is therefore crucial to extend cloud-specific languages with
the typing mechanisms offered by modern programming languages.
A preliminary step towards this direction is the design of a data
typing algorithm that could automatically infer a type for a dataset
or assist the programmer in designing it; key properties of the
inferred types should be succinctness and precision, which are not
easy to ensure in this setting.

∗Dario Colazzo has been partially funded by the Europa 2012 EIT ICT
Labs activity (RCLD12115-T1205A).
†Carlo Sartiani has been partially funded by RIL/2008.

Our Contribution In this paper we sketch a typing algorithm for
JSON datasets [2]. The approach we propose here can be used to
infer from scratch a succinct type for a collection of JSON objects,
as well as to validate a dataset against a human-designed type and,
if necessary, to adapt and improve this type.

The proposed algorithm consists of two stages.

1. In the first stage a Map/Reduce job processes the whole dataset
and infers, for each JSON object, a type. In particular, during
the Map phase, mappers examine all objects and, for each
object, return a record containing an inferred type as the key
and, as in WordCount, the value 1.
Before the Reduce phase starts, records output by mappers are
grouped by comparing their keys by means of a structural type
equivalence algorithm.
In the Reduce phase each reducer counts the number of ele-
ments for each equivalence class.
The result of the first stage is then a set of pairs < Ti;mi >,
such that the type

⋃
i Ti precisely describes the input dataset,

and each mi counts the input values described by Ti.

2. The goal of the second stage is to collapse similar types by us-
ing a type fusion algorithm, without loosing too much precision.
This second phase will hence produce a new collection of types
Uj such that

(i)
⋃
i Ti <:

⋃
j Uj and

(ii) |
⋃
j Uj | 6 |

⋃
i Ti|,

so that
⋃
j Uj is a more general and succinct description than⋃

i Ti.
1 This phase is guided by an heuristic that depends on

the numerosity mi of each type.

2. Data Model and Type Language
JSON objects are unordered sets of name/value pairs, where names
are unique strings and values comprise strings, booleans, chars,
numbers, objects, and ordered lists of values (called arrays). Or-
dered lists are not necessarily homogeneous. JSON objects obey
the following grammar, where n denotes a number, s a string, c a
char, and l a string label.

o ::= {l : v, . . . , l : v} Objects

v ::= o
| [v, . . . , v] Arrays
| vs Simple values
| ε Empty value

vs ::= true | false | s | c | n

1 <: denotes the standard subtyping relation defined as S <: T ⇐⇒
JSK ⊆ JT K.



We assume that records (i.e., objects) and lists (i.e., arrays)
can be manipulated with traditional record and list operations: in
particular, we assume that record concatenation, field selection,
and list concatenation are available. These operations are defined
as shown in Table 2.1, where ↑ denotes an error. Record and list
concatenation can be lifted to sets in the usual way.

Our type language, vaguely inspired by that described by Ben-
zaken et al. in [4], is shown below.

T ::= B
| {l : T, . . . , l : T} Closed record type
| T · T List concatenation
| T + T Union type
| T ◦ T Record concatenation
| T∗ | T+ | T? | ε

B ::= String | Bool | Char | Number Base types

The semantics of types is standard: as usual, J K is the minimal
function from types to sets of values that satisfies the following
monotone equations (for the sake of simplicity, we omitted the
semantics of base types), where π denotes a permutation of its
domain and L1, L2 are metavariables for lists:

JεK M
= {ε}

J{l1 : T1, . . . , ln : Tn}K
M
= {{m1 : u1, . . . ,mn : un} |
∃π : 1..n→ 1..n.∀i ∈ [1, n] :
π(i) = h =⇒ li = mh∧
uh ∈ JTiK}

JT1 · T2K
M
= JT1K · JT2K
M
= {L1 · L2 | L1 ∈ JT1K, L2 ∈ JT2K}

JT1 + T2K
M
= JT1K ∪ JT2K

JT1 ◦ T2K
M
= JT1K ◦ JT2K
M
= {oi ◦ oj | oi ∈ JT1K, oj ∈ JT2K}

JT∗K M
= JT K∗

JT+K M
= JT K+

JT?K M
= JT K?

Here, T1 · T2 and T1 ◦ T2 apply, respectively, list concatenation
and record concatenation to all pairs of elements coming from T1

and T2. Type T1 + T2 is the union of T1 and T2. Type T? takes the
union of T with the empty-list type, while T∗ and T+ are defined
in the usual way, by iterating list concatenation and taking the union
of the results of all the iterations. As in JSON objects, labels cannot
be repeated in record types; hence, two record types T1 and T2 can
be concatenated only if their label sets are disjoint.

3. Typing Algorithm
Our typing algorithm consists of two stages: during the first one,
data are analyzed to infer a “raw” collection of types; during the
second one, then, types are refined, through a process of type fusion,
to decrease their size while preserving a good level of precision.

3.1 Type Inference
The first step of our algorithm is modelled as a Map/Reduce job
analyzing all the objects in the dataset, according to the pseudocode
shown in Figure 1. MAP processes each JSON object and infers a
type for it by using the INFER procedure, based on the inference
rules of Table 3.1. If an input type T is provided, then MAP matches
each object against T and infers a new type only if the match fails.

Records returned by Map workers are grouped for the Reduce
phase according to a structural type equivalence algorithm, de-

MAP(JSONObj o; Optional Type T )

1 if (T = = NULL) or not ISMEMBER(o, T )
2 return < INFER(o); 1 >
3 else return < T ; 1 >

REDUCE(< Type T ; IntList list >

1 int card = 0
2 for each i ∈ list
3 card = card + 1
4 return < T ; card >

Figure 1. Pseudocode of the Map/Reduce job.

Table 3.1. Type inference rules.

(TYPETRUEBOOL)

` true : Bool

(TYPEFALSEBOOL)

` false : Bool

(TYPENUMBER)

` n : Number

(TYPESTRING)

` s : String

(TYPECHAR)

` c : Char

(TYPEARRAY)
` vi : Ti i = 1, . . . , n

` [v1, . . . , vn] : T1 · . . . · Tn
(TYPEREC)
∀i = 1, . . . , n : ` li : String
∀i, j = 1, . . . , n : i 6= j =⇒ li 6= lj
∀i = 1, . . . , n : ` vi : Ti

` {l1 : v1, . . . , ln : vn} : {l1 : T1, . . . , ln : Tn}

scribed by the rules of Table 3.2. 2 These rules actually define a
symbolic subtyping algorithm, and equivalence between T1 and T2

is verified by checking that T1 . T2 and T2 . T1. In the following
we will use T1 ' T2 to indicate that T1 and T2 are structurally
equivalent. 3

Symbolic subtyping rules define a partial order relation among
types; hence, if T1 6. T2 and T2 6. T1, we use the lexicographical
order on the string representation of T1 and T2.

EXAMPLE 3.1. Consider the following four JSON objects:

{ id : 1, { id : 2,
age : 14, name : “Edmond Dantes”,
admin : false, email : “ed@mc.com”,
name : “John Smith”, admin : true}
phone : 31324378}

{ id : 3, { id : 4,
name : “Mattia Pascal”, name : “Amanda Clarke”,
admin : false, age : 26,
age : 37, admin : false,
phone : “+333743227” phone : 2123142222}
email : “mp@pir.net”}

During the Map phase, each object is inspected and a distinct
type is created. In this case, the Map phase returns the following

2 For the sake of simplicity, we omitted the rules for base types.
3 We exploit here the ability of Hadoop [1] to accept any Java object
implementing the Comparable Java interface as a key.



Table 2.1. Record and list operations.

{l1 : v1, . . . , ln : vn}.l
M
=

{
vi if ∃i ∈ [1, n] : l = li
↑ otherwise

{l1 : v1, . . . , ln : vn} ◦ {m1 : u1, . . . ,mp : up}
M
=

{
{l1 : v1, . . . , ln : vn,m1 : u1, . . . ,mp : up} if {l1, . . . , ln} ∩ {m1, . . . ,mp} = ∅
↑ otherwise

[v1, . . . , vn] · [u1, . . . , up]
M
= [v1, . . . , vn, u1, . . . , up]

Table 3.2. Symbolic subtyping.

ε . ε
ε . T∗
{l1 : T1, . . . , ln : Tn} . {m1 : U1, . . . ,mn : Un}

if ∃π : 1..n→ 1..n.∀i ∈ [1, n] :
li = mπ(i) ∧ Ti . Uπ(i)

T1 · T2 . U1 · U2

if T1 . U1 and T2 . U2

T1 . U2 + U3

if T1 . U2 or T1 . U3

with T1 6= V1 + V2

T1 + T2 . U if T1 . U and T2 . U
T . U ∗ if T . U
T∗ . U ∗ if T . U∗
T1 · T2 . U∗

if T1 . U∗ and T2 . U∗
T1 ◦ T2 . U1 ◦ U2

if T1 . U1 and T2 . U2

four types:

T1 = { id : Number, T2 = { id : Number,
age : Number, name : String,
admin : Bool, email : String,
name : String, admin : Bool}
phone : Number}

T3 = { id : Number, T4 = { id : Number,
name : String, name : String,
admin : Bool, age : Number,
age : Number, admin : Bool,
phone : String, phone : Number}
email : String}

Each type is adorned with the number 1.
Before the Reduce phase is activated, types are compared by

using the structural equivalence algorithm, which discovers that
the first and the fourth type are equivalent. T1 and T4, are, then,
collapsed; as a consequence, the Reduce phase takes as input the
pairs < T1; {1, 1} >, < T2; {1} >, and < T3; {1} >, updates
the cardinality information in each pair, and returns the pairs
< T1; 2 >, < T2; 1 >, and < T3; 1 >.

3.2 Type Fusion
The second stage of our algorithm takes the collection of pairs <
type; card > returned by the first stage as input. The types in these
pairs precisely describe the input dataset. These types, however,
tend to be quite large and redundant, which makes them hard to
use for an efficient typechecking. As they bear many structural
similarities, it is however possible to derive a more succinct type,
at the price of a loss of precision.

We envision here a type fusion process that starts by sorting
< type; card > pairs by ascending cardinality. The algorithm,
then, selects the least representative type Ts (i.e., the type with

least cardinality), and inspects the remaining types, in ascending
cardinality order, to find types that can be successfully fused with
Ts. When a candidate type Tx has been found, Ts and Tx are fused
and the process is repeated until a size threshold is satisfied or no
more fusions are possible.

Type fusion is guided by a set of fusion rules of the form T1 |
T2 → U , where T1 + T2 <: U . These rules exploit the structural
similarities between types and cut redundant type fragments, as
shown in following example.

EXAMPLE 3.2. Consider the four JSON objects of Example 3.1. As
already seen, the Map/Reduce job returns three pairs: < T1; 2 >,
< T2; 1 >, and < T3; 1 >. T3, hence, is deemed as the less
representative type in the collection and is compared with T2 and
T1.

During the comparison with T2, the algorithm discovers that
T2 contains a strict subset of the fields of T3. The algorithm, hence,
applies the rule U1 ◦ U2 | U1 → U1 ◦ U2?, where U1 = T2 and
U2 = {age : Number, phone : String}.

The resulting type U1 ◦ U2?, having now cardinality 2, is then
matched against T1, which has no email field and a different type
for the phone field. The algorithm first decomposes4 U1 ◦ U2? as
V1 ◦ V2 ◦ V3 ◦ V4, where:

V1 = {id : Number, name : String, admin : Bool}
V2 = {email : String}
V3 = {phone : String}?
V4 = {age : Number}?
The algorithm, then, modifies the type of the phone field and

makes V2 optional, hence returning the following type:

{id : Number, name : String, admin : Bool}◦
{email : String}? ◦ {phone : String +Number}?◦
{age : Number}?

4. Discussion and Conclusions
The typing algorithm we sketched in the previous sections is in its
very infancy, and there are many open issues that must be addressed
and discussed.

1. Our type language is based on closed record types; an alterna-
tive solution would be the use of open record types that define
only the minimal set of fields that an object must contain. Open
record types have been extensively studied in the past (see [6]),
and their properties are well-known. To some extent these types
could be used to derive more succinct types, but we must better
explore the trade-off between succinctness and precision.

2. Our type fusion algorithm is based on a greedy strategy in
which types are sorted according to their actual cardinality, in
order to maximize precision for the most representative types.
Correctness of this algorithm must be formally proved, and the
degree of succinctness and precision of returned types must be
measured by means of experiments. An alternative approach

4 This decomposition returns a supertype of the original type.



would be the use of a clustering algorithm that clusters types
on the basis of a similarity metrics.

3. The third issue is tightly related to the previous one and con-
cerns the notion of type similarity. Our idea is to use a metrics
based on the structure of types; however, we want to explore
also more semantic approaches based on constraints [7] or au-
tomata. All these approaches must be investigated not only from
a theoretical point of view, but also from an experimental per-
spective.

4. The type fusion rules we envisioned here are rewriting rules that
are based, again, on the structure of types. Ideally, these rules
should be computationally not expensive, while forming a set
that is rich enough to capture the most interesting and frequent
cases.
As for the type similarity measure, we also have to explore alter-
native type fusion approaches based on constraints or automata.

5. The last issue concerns the structure of the second stage of the
algorithm. We sketched this stage as a sequential activity where
all types are processed on a single machine. It could be very
interesting to explore the possibility to parallelize this stage too
and to implement it on cloud computing architectures [3, 8].

As a final remark, we observe that JSON bears many similarities
with XML. In the recent past many approaches for deriving a
DTD from a collection of XML documents have been proposed
(see [5], for instance). These approaches usually rely on automata
and are computationally expensive. It could be very interesting to
understand if these approaches can be adapted to JSON and if they
can be parallelized and/or improved by leveraging on the specific
properties of JSON.

Acknowledgments
We would like to thank the anonymous reviewers for their insight-
ful comments.

References
[1] Hadoop. http://hadoop.apache.org/.
[2] Javascript object notation (JSON). http://json.org.
[3] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke.

Nephele/Pacts: a programming model and execution framework for
web-scale analytical processing. In J. M. Hellerstein, S. Chaudhuri,
and M. Rosenblum, editors, SoCC, pages 119–130. ACM, 2010. ISBN
978-1-4503-0036-0.

[4] V. Benzaken, G. Castagna, K. K. Nguyen, and J. Siméon. The next
700 NoSQL languages. Manuscript Draft, nov 2011.

[5] G. J. Bex, F. Neven, T. Schwentick, and S. Vansummeren. Inference of
concise regular expressions and DTDs. ACM Trans. Database Syst.,
35(2), 2010.

[6] L. Cardelli. Extensible records in a pure calculus of subtyping. The-
oretical Aspects of Object-Oriented Programming, pages 373–425,
1994.

[7] D. Colazzo, G. Ghelli, and C. Sartiani. Efficient inclusion for a class of
XML types with interleaving and counting. Inf. Syst., 34(7):643–656,
2009.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In OSDI, pages 137–150. USENIX Association, 2004.

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
Latin: a not-so-foreign language for data processing. In J. T.-L. Wang,
editor, SIGMOD Conference, pages 1099–1110. ACM, 2008. ISBN
978-1-60558-102-6.

[10] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the
data: Parallel analysis with Sawzall. Scientific Programming, 13(4):
277–298, 2005.


