
Haskell DSLs for Interactive Web Services

Andrew Farmer Andy Gill
Information and Telecommunication Technology Center

The University of Kansas
{afarmer,andygill}@ittc.ku.edu

Abstract
Robust cross-platform GUI-based applications are challenging to
write in Haskell, not because providing hooks into existing GUI
frameworks is hard, but because these hooks are both platform
dependent and prone to rapid bit-rot. Browser-based user inter-
faces implemented using Javascript and HTML5 offer some relief
from this situation, providing a standardized cross-platform API.
However, Javascript is a client-side scripting language, and a tra-
ditional shallow, foreign-function-call style Haskell interface to the
client does not scale well because calling a Javascript command in-
volves sending the command, and optionally waiting for a response,
over a network. Instead, we build a deep embedding of Javascript
commands inside a Javascript monad. Along with supporting web-
based infrastructure, we deliver entire program fragments to our
web-based applications. Using our monad, the Haskell programmer
can choose the granularity of interaction, with the option of having
reactive interfaces that are completely handled by the client.

1. Introduction
Haskell support for GUI libraries is a long and sad story with many
interesting actors. The reasons for this – in part – is the cross-model
problem. That is, well supported GUI libraries are written in other
languages, use other languages’ idioms, and tend to be platform
or deployment mechanism specific. Pure Haskell frameworks are
not mature or comprehensive enough for large applications. Cross-
model frameworks, such as wxHaskell, leverage other people’s
efforts, but quickly bit-rot, being dependent on a binary interface
to a specific version of the underlying library. If one is prepared
to commit to one platform, the situation is manageable, but cross
platform solutions often involve finding command-line options for
specific versions of sub-packages that are not written in Haskell.
The challenge of compiling a working ThreadScope [8] on OSX
Lion is formidable, even for seasoned Haskell programmers.

Web-based applications have become increasingly sophisticated
over the last few years. Facebook is a web application used by
almost a billion people. Google Maps interactively allows zooming
and exploration. Google Documents provides a useable set of office
tools for casual use. So the question we are asking is: can we use
Haskell and some cross-model techniques to subsume the Haskell
GUI graveyard problem?

This paper introduces sunroof, our custom DSL for writing
interactive web-based applications, and two other Haskell DSLs
that help connect Javascript in the browser to Haskell on a server.

• sunroof is a Javascript compiler, compiling monadic combina-
tors in Haskell to Javascript that is executed on the browser. (§4)

• kansas-comet provides the ability to transparently query and
manipulate the browser from the server, using Javascript. (§3)

• scotty provides a declarative DSL for dispatching incoming
RESTful [6] web requests to appropriate Haskell code. (§2)

These libraries all sit on top of the popular Haskell web server
warp [13]. All three DSLs make critical use of functional program-
ming ideas to deliver their functionality. We now discuss our DSLs
from bottom to top.

2. Scotty
The popular Warp HTTP server handles the heavy lifting of man-
aging connections and protocols, accepting a callback function that
implements application-specific logic with the type:

Request -> <warp-monad> Response

Scotty is a lightweight web framework that generates this applica-
tion callback. The programmer specifies route patterns which map
to corresponding Haskell code that builds a response, which is re-
turned to the client. This design supports the creation of RESTful
web services, which provide a uniform interface to server resources
via URIs and HTTP verbs and response codes. As an example:

fib :: Int -> Int
...

main = scotty 3000 $ do
get "/fib/:n" $ do

n <- param "n"
text $ pack $ show $ fib n

Running this program starts the Warp server listening on port 3000
and responds to GET requests for the URI /fib/n , where n can be
any integer. The route pattern contains a named capture, denoted
by a colon, named n. The response body will be the result of calling
fib on the value of the capture, which is returned by param.

Scotty’s design is taken directly from that of a popular Ruby
web framework called Sinatra. Indeed, we named it Scotty because
it represents the combination of Sinatra and Warp. We leverage
Haskell’s type system to provide smarter routes than Sinatra. In
the above example, n is an Int, and attempts to parse any ill-
formed URI (for example “/fib/foo”) will fail to match. In this
way, the programmer can always count on input being correctly
typed in the body of the route, overlapping routes are differentiated
by the type of the captures, and Scotty avoids some of the ad-hoc
input checking often needed in Ruby’s Sinatra. Scotty is further
documented on Hackage [5].

3. Kansas Comet
Comet is a web application design pattern where the server is able
to push data to the client [10]. Kansas Comet provides generic
support for the Comet idiom, on top of Scotty.

There are several techniques for implementing Comet, broadly
divided into streaming solutions, where an open connection is
maintained for the life of the application, and long polling solu-
tions, where the client periodically checks for new data. At the



moment, streaming solutions are finicky and notoriously browser-
specific, so Kansas Comet makes use of long polling.

The concept is simple – each Kansas Comet webpage has a soft-
ware transactional memory variable (TMVar) that acts as a mail-
box. Server processes may place Javascript code in the TMVar. The
client regularly requests the contents of this mailbox, and runs any
code in the response. If the server has nothing to be done, it holds
the incoming request, and waits until it does have something (or a
Haskell timeout happens). A TMVar is used rather than a channel to
make sure that the client and server stay in sync.

The client side of Kansas Comet is provided as a jQuery plugin.
When the page loads, a simple connect function starts the polling
process. When a connect request arrives at the server, a unique ses-
sion identifier is generated and returned to the client. This identifier
is passed by the client on all subsequent requests, and is used to
keep track of the TMVar mailboxes.

The server side of Kansas Comet is presented as a Scotty ap-
plication, which can be embedded in existing Scotty applications,
or hosted directly. The programmer provides a callback to Kansas
Comet which implements the application logic. As an example,
here is a Comet application which causes a browser alert whenever
the user clicks on a tag which is a member of the ‘click’ class.

web_app :: Document -> IO ()
web_app doc = do

register doc "click" "return {};"
forever $ do

res <- waitFor doc "click"
send doc "alert(’clicked!’);"

The call to register tells the client to register an event listener
that returns an empty object when the mouse is clicked. Then
waitFor blocks until a click event is posted by the client. Kansas
Comet also has direct support for queries (not shown), where the
result of a Javascript computation can be sent back to Haskell, and
Haskell will wait for the result.

The roundtrip required for events and queries can be a serious
performance bottleneck. In a drawing application that acts on every
mouse movement, the rate of event generation will be high, and it
is preferable that the client does the work as much as possible. To
that end, we wish to compile our reactive application logic into
Javascript for direct execution in the browser.

4. Sunroof
Javascript implementations on all major browsers provide a pow-
erful API for building interactive web pages. Libraries like jQuery
and jQueryUI build on this, providing a browser-independent set
of graphical widgets and other capabilities. We want to use these
libraries, but program in Haskell.

A usable model can be built using a simple translation of a fixed
set of function calls into Javascript commands. With careful con-
struction, we can combine commands before sending them, opti-
mizing network usage. The challenging part is having the Javascript
return values in an efficient manner. Consider this Haskell code:

c <- getContext "my-canvas"
c <$> beginPath()
c <$> arc(x, y, 20, 0, 2 * pi, false)
c <$> fillStyle := "#8ED6FF"
c <$> fill()

In a simple transaction model, getContext invokes a Javascript
command on the client, returning the response as c, a handle to
a canvas element, which we then invoke Javascript commands on.
However, there is no need to perform a round trip to the server,
and we would prefer the whole code fragment to be compiled to
Javascript such that the binding and use of c are performed on the

client directly, with no intermediate client ↔ server communica-
tion.

What we want to do is reify our Javascript monadic program,
using the techniques from Elliott et al. [4], which compiled Haskell
expressions by providing a deep embedding of overloaded arith-
metical syntax, and other operators. In order to allow monadic reifi-
cation, we need to require a class constraint on the monadic bind
so that we can generate a prototypical version of the value passed
through bind. Unfortunately, we cannot add post-hoc constraints on
existing classes.

We can, however, simulate this behavior by adding constraints
to all our primitives. The folklore has been that extracting a
monadic deep embedding with polymorphic primitives was not
possible. Surprisingly, this turns out to be a straightforward ap-
plication of existing techniques for unrolling monads and using
standard Haskell overloading to provide prototypical values.

To compile our Javascript monad, we use the Hackage package
operational [1], which builds on the ideas found in Unimo [9].
This package uses the left identity and associativity monad laws to
normalize a monadic program into a stream of primitive instruc-
tions terminated by a return.

Program ::= Primitive >>= Program
| return α

We then constrain the returned values of all the primitives to be
reifiable via a constraint on GADT constructors. In (the simplified
version of) our compiler, Javascript function calls are implemented
with the JS_Call primitive.

data JSInst a where
JS_Call :: (Sunroof a)

=> String -> [JSValue] -> JSInst a
...

From this list of primitives, the operational package allows us
to build our Javascript monad, with the monad instance for JSM is
provided by Program.

type JSM a = Program JSInst a

For technical reasons, Program is abstract in operational, so the
library provides the view function to give a normalized form of
the monadic code. In the case of JS_Call, bind corresponds to
normal sequencing, where the result of the function call is assigned
to a variable, whose name has already been passed to the rest of the
computation for compilation. The Sunroof class provides newVar,
assignVar, and showVar.

compile :: Sunroof c => JSM c -> CompM String
compile = eval . view

where
showArgs :: [JSValue] -> String
showArgs = intercalate "," . map show

eval :: Sunroof b
=> ProgramView JSInst b -> CompM String

eval (JS_Call nm args :>>= g) = do
a <- newVar
code <- compile (g a)
return $ assignVar a ++ nm ++ "("

++ showArgs args ++ ");" ++ code
...
eval (Return b) = return $ showVar b

Our compiler critically depends on the type-checking extensions
used for compiling GADTs, and scales to additional primitives,
provided they are constrained on their polymorphic result, such as
JS_Call.

Using this function, we compile our sunroof Javascript DSL to
Javascript, and now a bind in Haskell results in a value binding in



Javascript. The send command compiles the Javascript expressed
in monadic form and sends it to the browser for execution.

send :: (Sunroof a) => JSM a -> IO a

The Javascript code then responds with the return value, which can
be used as an argument to future calls to send. Finally, send is
thread-safe (two Javascript scripts can run concurrently in the same
session), and scripts that return unit are (by design) asynchronous.

We can write a trivial example which draws a circle that follows
the mouse:

drawing_app :: Document -> IO ()
drawing_app doc = do

...
send doc $ loop $ do

event <- waitFor "mousemove"
let (x,y) = (event ! "x",event ! "y")
c <- getContext "my-canvas"
c <$> beginPath()
c <$> arc(x, y, 20, 0, 2 * pi, false)
c <$> fillStyle := "#8ED6FF"
c <$> fill()

The following code is generated by Sunroof (on the Haskell server)
and then executed entirely on the client:

var loop0 = function(){
waitFor("mousemove",function(v1){

var v2=getContext("my-canvas");
(v2).beginPath();
(v2).arc(v1["x"],v1["y"],20,0,2*Math.PI,false);
(v2).fillStyle = "#8ED6FF";
(v2).fill();
loop0();

})
}; loop0();

Each Javascript function used from Haskell is declared using
a simple wrapper around the raw constructors. For example,
getContext is defined using:

getContext :: JSString -> JSM JSObject
getContext nm = JS_Call "getContext" [cast nm]

Functions like getContext can be provided in libraries on top
of sunroof, and these libraries can be used to implement the
interactivity. We expect that actual amount of JSM code to be small
in a large application. Finally, we have glossed over a number of
reification issues that we have covered in previous publications,
especially how we handle embedded conditionals [7]; a known
challenge when using deeply embedded DSLs. Work continues to
place new DSLs on top of sunroof, and explore various possible
trade-offs of our Javascript monadic language.

5. Related Work
There are numerous Haskell web frameworks, including HAppS,
Snap, and Yesod. Scotty addresses a much narrower slice of the
stack than these more full-featured frameworks. Each of them could
be used to implement a Comet server, but, to the best of our
knowledge, no ready-made plugin exists.

The UHC compiler offers a backend [14] that compiles Haskell
to Javascript which has been used to implement a web applica-
tion [15]. The GHCJS project [11] is an experimental attempt to
add a Javascript backend to GHC. Additionally, there are a number
of Haskell-hosted Javascript-generating DSLs, such as JMacro [3]
which works via quasiquotation and supports hygenic name gener-
ation. The Yesod framework has an experimental means of gener-
ating jQuery code [12].

Using a data-structure to represent a deep embedding of a
monad has been used before, including Unimo [9] and

operational [1]. A monomorphic deep embedding of a monad
has been previously reified using operational by Apfelmus [2].
We believe that our observation about using class constraints on the
primitives for a monadic language has increased the expressiveness
of monadic programs that can be realistically reified.

The precursor to sunroof was our blank-canvas DSL, where
monadic primitives were statically constructed to not return values,
and interactions were initiated by listening to specific events, mean-
ing every interaction was handled on the server side. Even with this
significant performance restriction, the package has been used by
several students to write basic interactive games in Haskell, includ-
ing an animated version of Connect Four, which gives us hope that
sunroof will also prove popular with our students.

6. Conclusion
By providing an executable specification language for RESTful
web services, a push-based session manager, and a Javascript
monad compiler, straightforward cross-platform graphical inter-
faces can be provided in Haskell. All three utilize functional
programming tricks, including catching type-coercion failures in
Scotty, software transactional memory in Kansas Comet, and the
novel monadic embedded DSL in Sunroof. The compilation of
monadic code in particular opens up the possibility of cross-
compilation in specific, targeted applications, such as web pro-
gramming, without needing a complete Haskell to Javascript com-
piler, and all the accompanying challenges that go with it.

7. Acknowledgments
We would like to thank Heinrich Apfelmus for pointing out that we
could rework our compiler to use operational, and providing us
with a suitable template of its usage.

References
[1] H. Apfelmus. http://hackage.haskell.org/package/

operational.
[2] H. Apfelmus. The operational monad tutorial. The Monad.Reader,

(15):37–55, January 2010.
[3] G. Bazerman. JMacro. http://www.haskell.org/haskellwiki/

Jmacro.
[4] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.

Journal of Functional Programming, 13(2), 2003.
[5] A. Farmer. http://hackage.haskell.org/package/scotty.
[6] R. T. Fielding. Architectural styles and the design of network-based

software architectures. PhD thesis, University of California, 2000.
[7] A. Gill and G. Kimmell. Capturing functions and catching satellites.

ITTC Technical Report ITTC-FY2011-TR-29952011-1, Jan. 2011.
[8] D. Jones, Jr., S. Marlow, and S. Singh. Parallel performance tuning for

haskell. In Haskell Symposium, pages 81–92, 2009.
[9] C.-K. Lin. Programming monads operationally with unimo. In ICFP,

pages 274–285, 2006.
[10] M. Mahemoff. HTTP Streaming. http://ajaxpatterns.org/

Comet.
[11] V. Nazarov. GHCJS Haskell to Javascript Compiler. https://

github.com/ghcjs/ghcjs.
[12] M. Snoyman. Client Side Yesod, an FRP-inspired approach. http:

//www.yesodweb.com/blog/2012/04/client-side.
[13] M. Snoyman. Warp: A Haskell web server. IEEE Internet Computing,

15(3):81–85, 2011.
[14] J. Stutterheim. Improving the UHC JavaScript backend. Technical

report, Utrecht University, 2012.
[15] A. Vermeulen. On Getting Rid of JavaScript. Technical report, Utrecht

University, 2012.

http://hackage.haskell.org/package/operational
http://hackage.haskell.org/package/operational
http://www.haskell.org/haskellwiki/Jmacro
http://www.haskell.org/haskellwiki/Jmacro
http://hackage.haskell.org/package/scotty
http://ajaxpatterns.org/Comet
http://ajaxpatterns.org/Comet
https://github.com/ghcjs/ghcjs
https://github.com/ghcjs/ghcjs
http://www.yesodweb.com/blog/2012/04/client-side
http://www.yesodweb.com/blog/2012/04/client-side

	Introduction
	Scotty
	Kansas Comet
	Sunroof
	Related Work
	Conclusion
	Acknowledgments

