J)F COPENHAGEN Department of Comput:

Faculty of Science @

Algebraic Run-Time Optimization
for Multiset Programming
(Dynamic Symbolic Computation)

Fritz Henglein

Department of Computer Science
University of Copenhagen
Email: henglein@diku.dk

XLDI 2012 invited talk, Copenhagen, 2012-09-09

Department of Computer Science

UNIVERSITY OF COPENHAGEN

Example problem

Gather, aggregate and interpret bulk data.
Example: A conjunctive join query (in SQL notation)

SELECT depName, acctBalance
FROM depositors, accounts
WHERE depId = acctld

How to evaluate such a query?

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Standard evaluation

Auxiliary definitions:

(f »xx g) (x, y) = (f x, g y)
p .==. @ (x,y)=(~(@zx=q7y)

prod st = [(x, y) | x <- s, y <=t]

Query:

map (depName *** acctBalance)
(filter (depId .==. acctId)
(depositors ‘prod‘ accounts))
+ Compositional, simple

—— ©(n?) time complexity (not scalable)

UNIVERSITY OF COPENHAGEN Department of Computer Science

Dynamic symbolic computation
Query, with standard evaluation:

map (depName *** acctBalance)
(filter (depld .==. acctId)
(depositors ‘prod‘ accounts))

Query, with dynamic symbolic computation:

map (depName *** acctBalance)
(filter ((depId, acctlId) is eqlnt)
(depositors ‘prod‘ accounts)

Difference:
++ O(n) time complexity (scalable!)
Note: map, filter, prod, *** have different types.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Lazy (symbolic) cross-products and unions

Add constructors for cross-product and union to mulitset datatype:

data MSet a where
0 :: MSet a
S :: a -> MSet a
U :: MSet a -> MSet a -> MSet a
X : MSet a -> MSet b -> MSet (a, b)
list s =
0: Empty

S x: Singleton
sl ‘U¢ s2: Union
sl ‘X‘ s2: Cartesian product (the new thing)

Department of Computer Science

UNIVERSITY OF COPENHAGEN

So what?

e U: Append lists!.
o Constant-time concatenation
o Conversion to cons lists 2 difference lists (efficient! coherent!)
o Alternative: Allow pattern-matching on U (efficient! coherent?)
@ X: Symbolic products

o Constant-time Cartesian product
o Conversion to append lists & multiplying out (inefficient!

coherent!)
o Alternative: Allow pattern-matching on X (efficient!

coherent?)
Idea: Exploit algebraic identities of Cartesian products for
@ asymptotic performance improvements in some contexts

@ constant-time overhead in all contexts

! Join lists, Boom lists, ropes, catenable lists

UNIVERSITY OF COPENHAGEN Department of Computer Science

Example: Count (cardinality)

count :: MSet a -> Int
count 0 = 0
count (S x) =1
count (s1 ‘U s2)
count (s1 ‘X°¢ s2)

count sl + count s2
count sl * count s2

@ Pattern match on new constructors X and U

e Exploitation of algebraic properties (here: homomorphic
property)
e No multiplying out of cross-product!

UNIVERSITY OF COPENHAGEN Department of Computer Science

Perform: Standard evaluation

perform :: (a -> b) -> MSet a -> MSet b

perform £ O =0

perform f (S x) S (f x)

perform f (s ‘U‘ t) perform f s ‘U¢ perform f t
perform f s perform f (norm s)

where
norm :: MSet a -> MSet a

multiplies products out.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Perform: Looking for asymptotic speedups

For which £, s, t:
perform f (s ‘X‘ t) = ... (no norm (s ‘X‘ t)) ...7

Example:

perform fst (s ‘X‘ t) = times (count t) s

where

times O s
times 1 s
times n s

s ‘U¢ times (n-1) s

Idea: Turn into evaluation rule. Need to pattern match on fst!

UNIVERSITY OF COPENHAGEN

10

Department of Computer Science

Performable functions (symbolic arrows)

data Func a b where

Func :: (a->b) ->Func a b
Id :: Func a a
(:%%%:) :: Func a b -> Func ¢ d ->
Func (a, c¢) (b, d)
Fst :: Func (a, b) a
Snd :: Func (a, b) b
ext :: Func (a b) -> (a -> b)
ext (Func f) x = f x
ext Id x =X

@ Func f: Ordinary function as performable function

o f :x*xx: g: Parallel composition of £, g

@ ext f: Ordinary function represented by performable functio

UNIVERSITY OF COPENHAGEN

Perform: Definition

Department of Computer Science

perform :: Func a b —>
perform f (s1 ‘U‘ s2)
perform (£1 :*xx*:

£2) (s1

MSet a -> MSet b
= perform f s1 ‘U‘ perform f s2
‘X¢ s2)

perform f1 s1 ‘X‘ perform f2 s2

perform Fst (sl ‘X‘ s2) = count s2 ‘times‘ sl
perform Snd (s1 ‘X‘ s2) = count sl ‘times‘ s2
perform f s = perform f (norm s) -- default clause

@ Clauses for X represent algebraic equalities that avoid
multiplying out cross-product.

@ Default clause corresponds to standard evaluation.
o Catches all cases not caught by special matches.

UNIVERSITY OF COPENHAGEN Department of Computer Science

Symbolic representation of scaling operator

Idea: Introduce lazy constructor for times.

data MSet a where
0 :: MSet a

S 11 a -> MSet a

U :: MSet a -> MSet a -> MSet a

X :: MSet a -> MSet b -> MSet (a, b)

(:.) :: Integer -> MSet a -> MSet a
perform Fst (sl ‘X¢ s2) = count s2 ‘:.¢ sl
perform Snd (s1 ‘X‘ s2) = count sl ‘:.°¢ s2

Plus additional clauses for perform, select, count, when applied
to (:.)-constructor terms.

12 .

UNIVERSITY OF COPENHAGEN

Reduction

@ We also need to aggregate and interpret multisets; e.g.
compute sum, maximum, minimum, product.

@ Reduction = unique homomorphism from (Bag(5), U, 0) to
commutative monoid (S, f, n)

reduce :: ((a, a) -> a, a) -> Bag a -> a

reduce (f, n) 0 =n

reduce (f, n) (S x) = x

reduce (f, n) (s ‘U t) = f (reduce f n s, reduce f n t)
reduce (f, n) (k “:.“ s) = ...7

reduce (f, n) (s ‘X* t) = ...7

Problem: What to do about X and (:.)?

13

Department of Computer Science

UNIVERSITY OF COPENHAGEN Department of Computer Science

Useful algebraic properties for reduction

Notation:
ST = map®(SxT) for binary @

f(S) map f(S) ff:U—-V,SCU
Y = reduce(+,0)

Algebraic identities for certain functions mapped over
cross-products:

Y(SF¥T) = |T|-ZS+S|- T

Y(S¥T) = £S*XT

Y(SFT)Y = [T|-ES?+|S|- ZT?+2-(XS)*(XT)
Y(S¥T)? = TS?x¥T?

nEs*7) = (MS)7«(n 1)l

14

UNIVERSITY OF COPENHAGEN

Reduction

e Add constructors for +,%,2,... to Func a b

@ Add constructor :$ for mapping symbolic arrows over
Cartesian products

reduce
reduce
reduce

reduce

reduce ::

(Func (a, a) a, a) -> Bag a -> a
(f, n) 0 =

(f, n) (S x) =

(f, n) (s ‘U* t) =

ext f (reduce f n s, reduce f n t)
(C:+:), 0) ((:+:) :$ (s X t)) =
count t * reduce (+, 0) s +

count s * mreduce (+, 0) t

-- more algebraic simplifications
reduce (f, n) s = reduce (f, n) (norm s) -- default

15

Department of Computer Science

UNIVERSITY OF COPENHAGEN Department of Computer Science

Application: Finite probability distributions

Represent finite probability spaces (“distributions”) with rational
probabilities as multisets:

type Probability = Rational
type Dist a = MSet a

occurrences of x in s
|s|
Probabilistic choice between two distributions:

Probability of element x:

choice :: Probability -> Dist a -> Dist a -> Dist a
choice ps t =
let v = numerator p * count t
w = (denominator p - numerator p) * count s
in (v “:.¢ 8) ‘U (w “:.¢ t)

16

UNIVERSITY OF COPENHAGEN Department of Computer Science

Computing mean and variance

msum = reduce ((:+:), 0)
mean p = msum p / count p

variance p =

let n = count p -— sum X"0
S = msum p -- sum X"1
s2 = msum (perform Sq p) -- sum X2

in (n * s2 - s72) / n"2

+ Compositional, simple

+ Linear time for independent random variables (products of
distributions)

17

UNIVERSITY OF COPENHAGEN Department of Computer Science

Fuzzy sets

Idea: Extend admissible range of numbers to scale with; e.g.

data MSet a where
0 :: MSet a
:: a -> MSet a
:: MSet a -> MSet a —-> MSet a
:: MSet a -> MSet b -> MSet (a, b)
.) :: Float -> MSet a —> MSet a

~ X o W

Allow
@ nonnegative integers: hybrid sets,
o realsin [0...1]: fuzzy sets;
e realsin [0...00]: fuzzy multisets;
°

all reals: fuzzy hybrid sets

18

UNIVERSITY OF COPENHAGEN Department of Computer Science

Summary: Dynamic symbolic computation

Method for adding symbolic processing step by step to base
implementation:

@ Identify (asymptotically) expensive operation
@ Introduce symbolic data constructor for its result

© Exploit algebraic properties during evaluation
o Not just lazy evaluation

@ This may lead to new needs/opportunities for applying
dynamic symbolic computation: Repeat!

19

UNIVERSITY OF COPENHAGEN Department of Computer Science

Relation to query optimization
Implementation performs classical algebraic query optimizations,
including
o filter promotion (performing selections early)
@ join introduction (replacing product followed by selection by
join)
@ join composition (combining join conditions to avoid
intermediate multiplying out)
Observe:
@ Done at run-time
@ No static preprocessing
@ Data-dependent optimization possible.
°

Deforestatation of intermediate materialized data structures
not necessary due to lazy evaluation.

20

U

21

NIVERSITY OF COPENHAGEN Department of Computer Science

Staged symbolic computation

@ Static symbolic computation
o All operations treated as constructors (“abstract syntax tree”)
o Rewriting on open terms (unknown/parametric input)
o Rewriting by interpretation
@ Standard evaluation
o Few operations treated as constructors (only value
constructors)
e Rewriting on ground terms only
o Compiled evaluation (“normalization by evaluation”)

+ : Staging: Symbolic operations executed only once
: Narrowing or no narrowing for free variables? (Lots of
rewrite rules)

— : Standard evaluation steps implemented twice
— : Interpreted symbolic computation
— : Compositionality?

UNIVERSITY OF COPENHAGEN

Department of Computer Science

.and dynamic symbolic computation

@ Symbolic and standard computation steps intermixed

e Some operations treated as constructors (driven by asymptotic
performance)

e Ground terms only

o Compiled symbolic computation and evaluation

— @ Unstaged: Symbolic operations incur (constant-time)
run-time overhead

— : Ground terms only: No need for narrowing (Few rewrite
rules)

— : Standard evaluation steps implemented only once
— . Compiled symbolic computation
— : Compositionality!

22 .

UNIVERSITY OF COPENHAGEN Department of Computer Science

23

Compositionality: Functional abstraction

module AccountManagement where
accts = ...
deps = ...
countFilter :: Pred (Account, Depositor) -> Int
countFilter pred =
count (select pred (accts ‘X‘ deps))

module Run where

res = (countFilter ((acctId, depIld) ‘Is‘ eqlnt32),
countFilter TT)

UNIVERSITY OF COPENHAGEN Department of Computer Science

Related work

In:

Henglein, Dynamic Symbolic Computation for Domain-Specific
Language Implementation: Proc. LOPSTR 2011, Springer LNCS,
to appear in 2012

24

UNIVERSITY OF COPENHAGEN Department of Computer Science

Future work

@ Conjectures: Subsumes all static algebraic relational algebra
optimizations; properly improves upon SQL-query optimization

@ Predictable performance: Compositional performance analysis
by abstract interpretation?

@ Robust performance: Performance closed under which local
transformations?

o Willard-Goyal-Paige query optimization for complex join
queries on more than 2 multisets

@ High-performance implementation for querying distributed
data sources

@ Scalable data-parallel algorithms and implementations (key
problem: join)

2 ®

UNIVERSITY OF COPENHAGEN

Department of Computer Science

Perspectives for XLDI

@ Methodology for cross-model DSL design and agile
implementation
e algebraic properties
e for symbolic computation improving asymptotic performance
e added step by step to canonical, “obviously correct”
implementation

o Alternative to embedding external DSL as abstract syntax

26

UNIVERSITY OF COPENHAGEN 2part '.Ufl':CIlT\let_

End of talk

Thank you!

27

