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What are Domain-Specific Runtimes?

Runtimes: Systems that underlie an application’s execution.

I Data Management

I Execution Management

I Integrity Management

Domain Specific Runtimes:

I Hadoop

I Pregel

I LINQ
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A Language for Building Domain-Specific Runtimes

Translate high-level domain-specific information into low-level
implementation decisions.

I Describe application logic flexibly.

I Represent domain-specific information at a high level.

I Recognize existing runtime patterns.

I Revisit implementation decisions over time.
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Applications

I DBToaster (SQL) <http://www.dbtoaster.org/>

I Dyna (Weighted Logic Programming)
<http://www.dyna.org/>

I BLOG (Probabilistic Graphical Models)
<http://bayesianlogic.cs.berkeley.edu/>
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Simple Control Flow

Triggers carry out small step computation. They:

I Perform side-effecting functional style computation.

I Only contain acyclic control flow.

I Can send messages to other triggers.

trigger fibonacci(n:int, a:int, b:int) {} =

if n == 1 then send(sink, a)

else send(fibonacci, n - 1, b, a + b)
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Complex Control Flow

Large step computation is done using message passing.

I Triggers are invoked on receiving a message.

I Message passing is asynchronous.

I Message processing is governed by a scheduler.

I Flexible enough to capture most execution patterns.

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 7 / 25



DSRs Language Design Annotations Closing

Collection Management

The K3 collection model is based on structural recursion.

I Basic collection transformers provide bounded iteration.

I More complex transformations are provided through
annotations, and are subject to depth-based analyses.

I Collection access operators provide the ability to mutate all or
parts of the collection.
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Mutable State

K3 maintains a deep value-based semantics of mutability by
default.

I Particular implementations can choose which approaches to
use (copy-on-write, etc.), to provide this mutability.

I Pointer-based semantics are available on demand, for
annotation writers, etc.

I Mutability of collections is determined at multiple
granularities:

I The entire collection,
I Parts of the collection (restructurability),
I Individual elements,

I Mutation operations ensure that the relevant integrity
constraints are satisfied.
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Exploiting Domain Specific Information

K3 uses a system of annotations to encode, and make use of
domain specific information. Annotations can:

I Be attached to any part of a K3 program.

I Be acted upon by any part of the toolchain.
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Categorization of Annotations

I Data structure annotations specify properties about a
collection, and facilitate declarative data structures.

I Sorted, Layout*, . . .

I Control annotations specify properties of a piece of code, and
facilitate adaptive execution.

I Logging, Profiling, . . .

I Hint Annotations describe possible optimizations.
I Layout*, Locking, . . .

I Constraint Annotations describe correctness properties of the
program, and require code to be generated to check them.

I FunDep, Unique, . . .
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Data Control and Execution
Integrity Efficiency Assurances Scalability

(Constraint) (Hint) (Constraint) (Hint)
Functional Layout, and Fault tolerance, Degrees of

dependencies compression checkpointing parallelism
Sortedness Indexes, views Service-level Vectorization

Orderedness Allocation, GC agreements Scheduling
Referential Data placement Auditing and Autotuning

integrity and replication compliance heuristics
Concurrency Lock granularity Access control Profiling
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Components of a Data Structure Annotation

A user-defined data structure annotation should contain
specifications of:

I Requirements from other annotations on the collection.

I Per-collection data structures.

I Schema extensions.

I Method definitions.

I Method hooks (method.pre, method.post, . . . ).
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A Simple Data Structure Annotation: Index

I Other required annotations:
None

I Per-collection data: An
auxiliary lookup data
structure.

I Schema extensions: None

I Method definitions: lookup

I Method hooks: Post hooks
for the maintenance of the
auxiliary data structure.
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Composing Annotations: B+Trees

3 5

1 2 3 4 5 6 7

- Insert
- Update
- Delete
- Lookup
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A Collection Of Blocks

3 5

1 2 3 4 5 6 7

declare b : Collection(Collection(t))
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Adding Tree Linkage

3 5

1 2 3 4 5 6 7

declare b : Collection(Collection(t)) @ { Tree }
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Managing Overflow and Underflow

3 5

1 2 3 4 5 6 7

declare b :

Collection(

Collection(t) @ {

Capacity(k), Fill(k),

OverflowHandler, UnderflowHandler

}

) @ { Tree(Capacity(k)) }
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Providing a B+Tree Interface

3 5

1 2 3 4 5 6 7

- Insert
- Update
- Delete
- Lookup

declare b :

Collection(

Collection(t) @ {

Capacity(k), Fill(k),

OverflowHandler, UnderflowHandler

}

) @ { Tree(Capacity(k)), BPTree }
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Extending the B+Tree

We can extend the existing
B+Tree with other behaviors,
such as:

I Cache consciousness, with
an annotation describing
fractal layouts of collections.

I Concurrency, through
annotations providing
logging or locking.

declare b :

Collection(

Collection(t) @ {

Capacity(k), Fill(k),

OverflowHandler,

UnderflowHandler

}

) @ {

Tree(Capacity(k)), BPTree

FractalLayout, Logged

}

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 21 / 25



DSRs Language Design Annotations Closing

Building Domain Specific Runtimes

Language Design

Annotations: Exploiting Domain Specific Information

Closing

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 22 / 25



DSRs Language Design Annotations Closing

Implementation Status

K3 currently has:

I A functional core, with value-based mutation.

I A simple distributed execution model.

I An initial model of data structure and control annotations.
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Next Steps

I Language Features:
I Effect System - Guiding parallelization decisions.
I Depth analysis of annotation methods - User-defined collection

transformations.

I Scalability and Performance:
I Optimizer Model.
I Eventually-consistent distributed data structures.
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The End

I <http://damsl.cs.jhu.edu/>

I <http://cs.jhu.edu/~shyam/>
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