
DSRs Language Design Annotations Closing

K3: Language Design for Building Multi-Platform
Domain-Specific Runtimes

P.C. Shyamshankar
with Zachary Palmer and Yanif Ahmad

Department of Computer Science,
The Johns Hopkins University

First International Workshop on Cross-Model Language Design
and Implementation

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 1 / 25



DSRs Language Design Annotations Closing

What are Domain-Specific Runtimes?

Runtimes: Systems that underlie an application’s execution.

I Data Management

I Execution Management

I Integrity Management

Domain Specific Runtimes:

I Hadoop

I Pregel

I LINQ

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 2 / 25



DSRs Language Design Annotations Closing

A Language for Building Domain-Specific Runtimes

Translate high-level domain-specific information into low-level
implementation decisions.

I Describe application logic flexibly.

I Represent domain-specific information at a high level.

I Recognize existing runtime patterns.

I Revisit implementation decisions over time.

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 3 / 25



DSRs Language Design Annotations Closing

Applications

I DBToaster (SQL) <http://www.dbtoaster.org/>

I Dyna (Weighted Logic Programming)
<http://www.dyna.org/>

I BLOG (Probabilistic Graphical Models)
<http://bayesianlogic.cs.berkeley.edu/>

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 4 / 25

<http://www.dbtoaster.org/>
<http://www.dyna.org/>
<http://bayesianlogic.cs.berkeley.edu/>


DSRs Language Design Annotations Closing

Building Domain Specific Runtimes

Language Design

Annotations: Exploiting Domain Specific Information

Closing

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 5 / 25



DSRs Language Design Annotations Closing

Simple Control Flow

Triggers carry out small step computation. They:

I Perform side-effecting functional style computation.

I Only contain acyclic control flow.

I Can send messages to other triggers.

trigger fibonacci(n:int, a:int, b:int) {} =

if n == 1 then send(sink, a)

else send(fibonacci, n - 1, b, a + b)

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 6 / 25



DSRs Language Design Annotations Closing

Complex Control Flow

Large step computation is done using message passing.

I Triggers are invoked on receiving a message.

I Message passing is asynchronous.

I Message processing is governed by a scheduler.

I Flexible enough to capture most execution patterns.

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 7 / 25



DSRs Language Design Annotations Closing

Collection Management

The K3 collection model is based on structural recursion.

I Basic collection transformers provide bounded iteration.

I More complex transformations are provided through
annotations, and are subject to depth-based analyses.

I Collection access operators provide the ability to mutate all or
parts of the collection.

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 8 / 25



DSRs Language Design Annotations Closing

Mutable State

K3 maintains a deep value-based semantics of mutability by
default.

I Particular implementations can choose which approaches to
use (copy-on-write, etc.), to provide this mutability.

I Pointer-based semantics are available on demand, for
annotation writers, etc.

I Mutability of collections is determined at multiple
granularities:

I The entire collection,
I Parts of the collection (restructurability),
I Individual elements,

I Mutation operations ensure that the relevant integrity
constraints are satisfied.

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 9 / 25



DSRs Language Design Annotations Closing

Building Domain Specific Runtimes

Language Design

Annotations: Exploiting Domain Specific Information

Closing

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 10 / 25



DSRs Language Design Annotations Closing

Exploiting Domain Specific Information

K3 uses a system of annotations to encode, and make use of
domain specific information. Annotations can:

I Be attached to any part of a K3 program.

I Be acted upon by any part of the toolchain.

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 11 / 25



DSRs Language Design Annotations Closing

Categorization of Annotations

I Data structure annotations specify properties about a
collection, and facilitate declarative data structures.

I Sorted, Layout*, . . .

I Control annotations specify properties of a piece of code, and
facilitate adaptive execution.

I Logging, Profiling, . . .

I Hint Annotations describe possible optimizations.
I Layout*, Locking, . . .

I Constraint Annotations describe correctness properties of the
program, and require code to be generated to check them.

I FunDep, Unique, . . .

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 12 / 25



DSRs Language Design Annotations Closing

Data Control and Execution
Integrity Efficiency Assurances Scalability

(Constraint) (Hint) (Constraint) (Hint)
Functional Layout, and Fault tolerance, Degrees of

dependencies compression checkpointing parallelism
Sortedness Indexes, views Service-level Vectorization

Orderedness Allocation, GC agreements Scheduling
Referential Data placement Auditing and Autotuning

integrity and replication compliance heuristics
Concurrency Lock granularity Access control Profiling

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 13 / 25



DSRs Language Design Annotations Closing

Components of a Data Structure Annotation

A user-defined data structure annotation should contain
specifications of:

I Requirements from other annotations on the collection.

I Per-collection data structures.

I Schema extensions.

I Method definitions.

I Method hooks (method.pre, method.post, . . . ).

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 14 / 25



DSRs Language Design Annotations Closing

A Simple Data Structure Annotation: Index

I Other required annotations:
None

I Per-collection data: An
auxiliary lookup data
structure.

I Schema extensions: None

I Method definitions: lookup

I Method hooks: Post hooks
for the maintenance of the
auxiliary data structure.

11

7 13

5 9

5

7

11
9

13

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 15 / 25



DSRs Language Design Annotations Closing

Composing Annotations: B+Trees

3 5

1 2 3 4 5 6 7

- Insert
- Update
- Delete
- Lookup

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 16 / 25



DSRs Language Design Annotations Closing

A Collection Of Blocks

3 5

1 2 3 4 5 6 7

declare b : Collection(Collection(t))

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 17 / 25



DSRs Language Design Annotations Closing

Adding Tree Linkage

3 5

1 2 3 4 5 6 7

declare b : Collection(Collection(t)) @ { Tree }

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 18 / 25



DSRs Language Design Annotations Closing

Managing Overflow and Underflow

3 5

1 2 3 4 5 6 7

declare b :

Collection(

Collection(t) @ {

Capacity(k), Fill(k),

OverflowHandler, UnderflowHandler

}

) @ { Tree(Capacity(k)) }

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 19 / 25



DSRs Language Design Annotations Closing

Providing a B+Tree Interface

3 5

1 2 3 4 5 6 7

- Insert
- Update
- Delete
- Lookup

declare b :

Collection(

Collection(t) @ {

Capacity(k), Fill(k),

OverflowHandler, UnderflowHandler

}

) @ { Tree(Capacity(k)), BPTree }

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 20 / 25



DSRs Language Design Annotations Closing

Extending the B+Tree

We can extend the existing
B+Tree with other behaviors,
such as:

I Cache consciousness, with
an annotation describing
fractal layouts of collections.

I Concurrency, through
annotations providing
logging or locking.

declare b :

Collection(

Collection(t) @ {

Capacity(k), Fill(k),

OverflowHandler,

UnderflowHandler

}

) @ {

Tree(Capacity(k)), BPTree

FractalLayout, Logged

}

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 21 / 25



DSRs Language Design Annotations Closing

Building Domain Specific Runtimes

Language Design

Annotations: Exploiting Domain Specific Information

Closing

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 22 / 25



DSRs Language Design Annotations Closing

Implementation Status

K3 currently has:

I A functional core, with value-based mutation.

I A simple distributed execution model.

I An initial model of data structure and control annotations.

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 23 / 25



DSRs Language Design Annotations Closing

Next Steps

I Language Features:
I Effect System - Guiding parallelization decisions.
I Depth analysis of annotation methods - User-defined collection

transformations.

I Scalability and Performance:
I Optimizer Model.
I Eventually-consistent distributed data structures.

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 24 / 25



DSRs Language Design Annotations Closing

The End

I <http://damsl.cs.jhu.edu/>

I <http://cs.jhu.edu/~shyam/>

P.C. Shyamshankar The Johns Hopkins University

K3: Language Design for Building Multi-Platform Domain-Specific Runtimes 25 / 25

<http://damsl.cs.jhu.edu/>
<http://cs.jhu.edu/~shyam/>

	Building Domain Specific Runtimes
	Language Design
	Annotations: Exploiting Domain Specific Information
	Closing

