Typing Massive |SON
Datasets

Dario Colazzo Giorgio Ghelli Carlo Sartiani
Universite Paris Sud - Universita di Pisa Universita della

INRIA Basilicata

Sunday, September 9, 12

Qutline

® [ntroduction & Motivation
® Data model & Type language
® Typing approach

® Conclusions and future work

Sunday, September 9, 12

INTRODUCTION &
MOTIVATION

eeeeeeeeeeeeeeeeeeee

Cloud Computing

® Cloud computing is a very popular computing
paradigm

® (lusters of low-end, unreliable, cheap machines
® Applications
® Data Storage
® DropBox, SkyDrive, Google Drive, iCloud
® Data Analysis

® Facebook,Yahoo!, Google

4

Sunday, September 9, 12

Programming Data
Intensive Applications

® Traditional programming languages (e.g., Java, C++, C#, etc.)

® The programmers must deal with the details of the
specific cloud architecture

® map, reduce, local sort, combiner, etc. in Hadoop/Java
® |anguages for the cloud

® A mix between scripting languages and declarative
database programming languages

® They hide the deatails of the underlying architecture
(e.g., Sawzall, Pig Latin)

5

Sunday, September 9, 12

Cloud Languages and
Static Analysis

® Support for static analysis and typechecking is usually
limited

® Types for input data are optional

® Many controls are deferred at runtime

® There is no validation of the input data against a schema
® Consequences

® |obs can raise dynamic type errors

Sunday, September 9, 12

Example: Pig Latin
® Pig Latin types
® Base types
® int, long, double, bytearray, chararray
® Map types
® Used for describing records
® Tuple types

® Record types without types for the fields (only
field labels are specified)

® Bag types

Sunday, September 9, 12

Example: Pig Latin
® |nput1%12(yahoo,25) (facebook,15) (twitter,7)

® A program with a wrong schema:

data = LOAD 'input.txt' AS (query:INT, count:CHARARRAY) ;
data2 = FOREACH data GENERATE TOKENIZE (data.count) ;

STORE data2 INTO 'EXAMPLEL';
® This program is deemed as type-correct

® A run-time error is raised, as TOKENIZE only accepts strings
as its input

Sunday, September 9, 12

Objectives

® Jo automatically derive succinct and precise schema
information from large JSON datasets

® Succinctness has a direct impact on efficiency and
effectiveness of typechecking

® Avoiding type errors related to imprecise types
® A concise but precise supertype

® To extend and improve existing type systems of
cloud languages

Sunday, September 9, 12

DATA MODEL AND TYPE
LANGUAGE

eeeeeeeeeeeeeeeeeeee

Data Model

o= {l:v,...,l:v} Objects
Vo= 0
U, ...,V Arrays
Vs Simple values
€ Empty value

vs := true | false| s | ¢ | n

Sunday, September 9, 12

Type Language

T .= B
{1:7T,...,1:T} Closed record type
1T List concatenation
T+ 7T Union type
ToT Record concatenation
Tx | T+ | T?7 | €

B:= String | Bool | Char | Number Base types

12

Sunday, September 9, 12

Type Semantics

00000

4
4

1> [l [l (1> > > > >

{{mq : uq, ..., My @ Unp |
dr:1.n— 1.nVi € [1,n] :

7T(Z) —h — [, =mp ANuy, € [[Tz]]}
T3] - [T2]

{L1-Lo | Ly €|T1], Lo € [T5]}
(T2 U [13]

[T7]) o [T2]

{o;00; | 0; € [T1],0; € [T2]}

|'T7||*
1T+
o

13

Sunday, September 9, 12

Type Equivalence

® We need a type equivalence notion for later use
® Polynomial time

® We base our type equivalence on a set of syntactical
subtyping rules

® Correct but not complete
® Polynomial time by using dynamic programming

® VWhen two types are not comparable, we resort to a
lexicographical comparison between types

14

Sunday, September 9, 12

Subtyping Rules

€ < €
€ N A
{ty :Ty,... 0 :Th} S {mi:Ug,....my, :U,} if3n:1.n— 1.nVie[l,n]:
li = mqiy N S Ur(i
Tl'T2 5 U1°U2 ilegUl al’ldTQ,SUQ
T 5 Us + Us it T4 5 U, or 1} S Uswith T7 # Vi + Vs
Tl—l—TQ 5 U 1fT1,§UandT2§U
T < Ux it T S U
T < Ux it T < Ux
T1°T2 5 U x 1fT1§U>l<andT2§U>|<
T1 OT2 5 U1 O U2 if Ir: 1.2 - 1.2V € [1,2] . Tz 5 Uw(z)

|5

Sunday, September 9, 12

TYPING APPROACH

eeeeeeeeeeeeeeeeeeee

Typing Algorithm
® Our typing algorithm comprises two stages

® First stage

® We analyze each JSON object and infer a precise
type for it

® Second stage

® We fuse the collection of types obtained from the
first stage so to get a more succinct type

® Fusion is governed by a set of fusion rules

|7

Sunday, September 9, 12

First Stage

® A Map/Reduce job
® |n the Map phase we infer a type for each JSON object
® We also record cardinality information (as in WordCount)

® |n the Reduce phase equivalent types are grouped together
and cardinality is updated

® The output of this job is a collection of pairs <Tj;; cardi>
® Tiisatype
® card; is the number of object in the dataset having type T;

e U;Tiis the type for the objects in the dataset

18

Sunday, September 9, 12

Map/Reduce |ob

MAP(JSONObj o; Optional Type T)

1 if (T'==NULL) or not ISMEMBER/(0,T)
2 return < INFER(0);1 >
3 elsereturn <71 >

REDUCE(< Type T;IntList list >

1 int card = 0

2 for each i € list

3 card = card + 1
4 return <71’ card >

19

Sunday, September 9, 12

Typing Inference Rules

(TyPETRUEBOOL) (TYPEFALSEBOOL)

~ true : Bool — false : Bool
(TYPENUMBER) (TYPESTRING)

= n : Number - s @ String
(TYPECHAR) (TYPEARRAY)

Fov, T r=1,....n

= ¢ : Char = v1, . vn] s T - T,

(TYPEREC)

Vi=1,...,n: = [; : String
Vi,7=1,...,n: ’L#]:>lz7élj
Wzl,...,n: |_UZ'ZTZ'

T I e e S L Y AT A

20

Sunday, September 9, 12

First Stage Example

® 4 |SON objects

{ d:1, { d: 2,
age : 14, name : “Edmond Dantes”,
admin : false, email : “ed@Qmec.com”,
name : “John Smith”, admin : true}

phone : 31324378}

{ id:3, { d:4,
name : “Mattia Pascal”, name : “Amanda Clarke”,
admin : false, age : 26,
age : 37, admin : false,
phone : “4-333743227” phone : 2123142222}

email : “mp@pir.net” }

21

Sunday, September 9, 12

First Stage Example

® Map phase inferred types

Ty ={ id: Number, T, ={ id: Number,
age : Number, name : String,
admin : Bool, emazl : String,
name : String, admin : Bool}
phone : Number}

T5 =4 id: Number, T, =4 +id: Number,
name : String, name : String,
admin : Bool, age : Number,
age : Number, admin : Bool,
phone : String, phone : Number}

email : String}

® Reduce phase output: <T;{2}>, <T»; {|}>, <T3;{I}>

22

Sunday, September 9, 12

Second Stage

® Types obtained from the first stage are fused
together

® More succinct types
® [oss of precision

® Fusion is performed according to fusion rules

® A fusion rule <T; | T2> — T3 is a rewriting rule such
that

[T| +T2 ST3
° [Ti+Ta]| =T

23

Sunday, September 9, 12

Fusion Rules

® Fusion rules should be easy to check and to evaluate
® We have a provisional set of rules
® Regular expression rules
® Simplification rules
® Subtyping rules
® General rules

® Record type rules

24

Sunday, September 9, 12

Regular Expression Rules

Simplification rules

1) Tl|le—>T if T is nullable
2) Tle—T7
3) T+ |e—Tx
4) T-e|U—-T+U
5) e T|U—-T+U
6) T|T—>T
Subtyping rules
7 T|U—=U if T'~ U and |T| > |U]|
8 T|U—-U if "< U and |T| > |U]|

(General rules
9) T|T-U—-T-U?
10) T-U|T-V->T-(U+YV)
11) T|\U-T—U?-T
12) U-T|\V-T—U+V)-T

25

Sunday, September 9, 12

Record lype Rules

3) {ll:Tl}OU‘{llZTQ}OV%{lllTl—FTQ}O(U‘FV)
14) T|ToU —ToU?
15) ToU|ToV —To(U+V)

eeeeeeeeeeeeeeeeeeee

Type Fusion Algorithm

® An heuristic algorithm that focuses on types with low
cardinality

® Types with cardinality greater than a given threshold
are ignored to improve the overall precision

® Types are ordered by ascending cardinality into a
priority queue

® At each iteration
® The type with the lowest cardinality is popped

® The type is compared with the other types in the
queue to see if a fusion rule is applicable

® The algorithm halts when no more fusions are possible
or a given threshold is satisfied

27

Sunday, September 9, 12

Example

® Output of the reduce phase: <T;{2}>, <Ty; {l}>,

<Ts3; { | }>

® Record types are splitted into concatenations of
single-field record types

T, =

&3
|
R N e L L W N N

id : Number}o
age : Number}o
admin : Bool}o
name : String}o
phone : Number}
id : Number}o
name : String}o
admin : Bool}o
age : Number}o
phone : String}o
email : String}
28

Vet W s W et W o

id : Number}o
name : String}o
email : String}o
admin : Bool}

Sunday, September 9, 12

Example
® T, is selected and fused with T3 by using Rule (14)

® Fused typeV,

Vi = {id: Number}o
{name : String}o
{emaal : String}o
{admin : Bool}o
({age : number} o {phone : String})?

29

Sunday, September 9, 12

Example
® T, is selected and fused withV, by using Rule (15)

® Fused type V>

Vo = {id: Number}o
{name : String}o
{admin : Bool}o
(({age : Number} o {phone : String})+
({email : String} o ({age : Number} o {phone : Number})?))

30

Sunday, September 9, 12

Example

® V, is further simplified by applying fusion rules to its
union types

® Rule (15) is applied to factorize {age:Number}
® Rule (13) is then #Plied to phone fields
e Output type

Vs = {id: Number}o

{name : String}o
{admin : Bool}o

({age : Number} o ({phone : String + Number} o {email : String})?)?

31

Sunday, September 9, 12

CONCLUSIONS AND
FUTURE WORK

eeeeeeeeeeeeeeeeeeee

Research Status

® A very preliminary work
® We are working on
® Defining a richer set of fusion rules
® |mproving the fusion algorithm
® Designing a Map/Reduce fusion algorithm

® Adapting our algorithm to the type languages of
existing cloud languages

33

Sunday, September 9, 12

Conclusions

® An approach for typing massive datasets of |[SON
objects

® Based on fusion rules

® Adaptable to Map/Reduce

34

Sunday, September 9, 12

