
Typing Massive JSON
Datasets

Dario Colazzo
Université Paris Sud -

INRIA

Giorgio Ghelli
Università di Pisa

Carlo Sartiani
Università della

Basilicata

Sunday, September 9, 12

Outline

• Introduction & Motivation

• Data model & Type language

• Typing approach

• Conclusions and future work

2

Sunday, September 9, 12

INTRODUCTION &
MOTIVATION

Sunday, September 9, 12

Cloud Computing
• Cloud computing is a very popular computing

paradigm

• Clusters of low-end, unreliable, cheap machines

• Applications

• Data Storage

• DropBox, SkyDrive, Google Drive, iCloud

• Data Analysis

• Facebook, Yahoo!, Google

4

Sunday, September 9, 12

Programming Data
Intensive Applications

• Traditional programming languages (e.g., Java, C++, C#, etc.)

• The programmers must deal with the details of the
specific cloud architecture

• map, reduce, local sort, combiner, etc. in Hadoop/Java

• Languages for the cloud

• A mix between scripting languages and declarative
database programming languages

• They hide the deatails of the underlying architecture
(e.g., Sawzall, Pig Latin)

5

Sunday, September 9, 12

Cloud Languages and
Static Analysis

• Support for static analysis and typechecking is usually
limited

• Types for input data are optional

• Many controls are deferred at runtime

• There is no validation of the input data against a schema

• Consequences

• Jobs can raise dynamic type errors

6

Sunday, September 9, 12

Example: Pig Latin
• Pig Latin types

• Base types

• int, long, double, bytearray, chararray

• Map types

• Used for describing records

• Tuple types

• Record types without types for the fields (only
field labels are specified)

• Bag types
7

Sunday, September 9, 12

Example: Pig Latin
• Input.txt: (yahoo,25) (facebook,15) (twitter,7)

• A program with a wrong schema:

data = LOAD 'input.txt' AS (query:INT,count:CHARARRAY);

data2 = FOREACH data GENERATE TOKENIZE(data.count);

STORE data2 INTO 'EXAMPLE1';

• This program is deemed as type-correct

• A run-time error is raised, as TOKENIZE only accepts strings
as its input

8

Sunday, September 9, 12

Objectives

• To automatically derive succinct and precise schema
information from large JSON datasets

• Succinctness has a direct impact on efficiency and
effectiveness of typechecking

• Avoiding type errors related to imprecise types

• A concise but precise supertype

• To extend and improve existing type systems of
cloud languages

9

Sunday, September 9, 12

DATA MODEL AND TYPE
LANGUAGE

Sunday, September 9, 12

Data Model

o ::= {l : v, . . . , l : v} Objects

v ::= o

| [v, . . . , v] Arrays
| vs Simple values
| ✏ Empty value

vs ::= true | false | s | c | n

11

Sunday, September 9, 12

Type Language

T ::= B
| {l : T, . . . , l : T} Closed record type

| T · T List concatenation

| T + T Union type

| T � T Record concatenation

| T⇤ | T+ | T? | ✏

B ::= String | Bool | Char | Number Base types

12

Sunday, September 9, 12

Type Semantics

13

J✏K M
= {✏}

J{l1 : T1, . . . , ln : Tn}K
M
= {{m1 : u1, . . . ,mn : un} |

9⇡ : 1..n ! 1..n.8i 2 [1, n] :
⇡(i) = h =) li = mh ^ uh 2 JTiK}

JT1 · T2K
M
= JT1K · JT2K
M
= {L1 · L2 | L1 2 JT1K, L2 2 JT2K}

JT1 + T2K
M
= JT1K [JT2K

JT1 � T2K
M
= JT1K � JT2K
M
= {oi � oj | oi 2 JT1K, oj 2 JT2K}

JT⇤K M
= JT K⇤

JT+K M
= JT K+

JT?K M
= JT K?

Sunday, September 9, 12

Type Equivalence

• We need a type equivalence notion for later use

• Polynomial time

• We base our type equivalence on a set of syntactical
subtyping rules

• Correct but not complete

• Polynomial time by using dynamic programming

• When two types are not comparable, we resort to a
lexicographical comparison between types

14

Sunday, September 9, 12

Subtyping Rules

15

✏ . ✏
✏ . T⇤
{l1 : T1, . . . , ln : Tn} . {m1 : U1, . . . ,mn : Un} if 9⇡ : 1..n ! 1..n.8i 2 [1, n] :

li = m⇡(i) ^ Ti . U⇡(i)

T1 · T2 . U1 · U2 if T1 . U1 and T2 . U2

T1 . U2 + U3 if T1 . U2 or T1 . U3with T1 6= V1 + V2

T1 + T2 . U if T1 . U and T2 . U
T . U⇤ if T . U
T⇤ . U⇤ if T . U⇤
T1 · T2 . U⇤ if T1 . U⇤ and T2 . U⇤
T1 � T2 . U1 � U2 if 9⇡ : 1..2 ! 1..2.8i 2 [1, 2] : Ti . U⇡(i)

Sunday, September 9, 12

TYPING APPROACH

Sunday, September 9, 12

Typing Algorithm
• Our typing algorithm comprises two stages

• First stage

• We analyze each JSON object and infer a precise
type for it

• Second stage

• We fuse the collection of types obtained from the
first stage so to get a more succinct type

• Fusion is governed by a set of fusion rules

17

Sunday, September 9, 12

First Stage
• A Map/Reduce job

• In the Map phase we infer a type for each JSON object

• We also record cardinality information (as in WordCount)

• In the Reduce phase equivalent types are grouped together
and cardinality is updated

• The output of this job is a collection of pairs <Ti; cardi>

• Ti is a type

• cardi is the number of object in the dataset having type Ti

• ∪i Ti is the type for the objects in the dataset

18

Sunday, September 9, 12

Map/Reduce Job

Map(JSONObj o; Optional Type T)

1 if (T == null) or not isMember(o, T)
2 return < Infer(o); 1 >
3 else return < T ; 1 >

Reduce(< Type T ; IntList list >

1 int card = 0
2 for each i 2 list
3 card = card + 1
4 return < T ; card >

19

Sunday, September 9, 12

Typing Inference Rules

(TypeTrueBool)

` true : Bool

(TypeFalseBool)

` false : Bool

(TypeNumber)

` n : Number

(TypeString)

` s : String

(TypeChar)

` c : Char

(TypeArray)
` vi : Ti i = 1, . . . , n

` [v1, . . . , vn] : T1 · . . . · Tn

(TypeRec)
8i = 1, . . . , n : ` li : String

8i, j = 1, . . . , n : i 6= j =) li 6= lj

8i = 1, . . . , n : ` vi : Ti

` {l1 : v1, . . . , ln : vn} : {l1 : T1, . . . , ln : Tn}

20

Sunday, September 9, 12

First Stage Example
• 4 JSON objects

{ id : 1, { id : 2,

age : 14, name : “Edmond Dantes”,

admin : false, email : “ed@mc.com”,

name : “John Smith”, admin : true}
phone : 31324378}

{ id : 3, { id : 4,

name : “Mattia Pascal”, name : “Amanda Clarke”,

admin : false, age : 26,

age : 37, admin : false,
phone : “+333743227” phone : 2123142222}
email : “mp@pir.net”}

21

Sunday, September 9, 12

First Stage Example
• Map phase inferred types

T1 = { id : Number, T2 = { id : Number,

age : Number, name : String,
admin : Bool, email : String,
name : String, admin : Bool}
phone : Number}

T3 = { id : Number, T4 = { id : Number,

name : String, name : String,
admin : Bool, age : Number,

age : Number, admin : Bool,

phone : String, phone : Number}
email : String}

• Reduce phase output: <T1;{2}>, <T2; {1}>, <T3; {1}>

22

Sunday, September 9, 12

Second Stage
• Types obtained from the first stage are fused

together

• More succinct types

• Loss of precision

• Fusion is performed according to fusion rules

• A fusion rule <T1 | T2> → T3 is a rewriting rule such
that

• T1 + T2 ≲ T3

• | T1 + T2 | ≥ |T3|

23

Sunday, September 9, 12

Fusion Rules

• Fusion rules should be easy to check and to evaluate

• We have a provisional set of rules

• Regular expression rules

• Simplification rules

• Subtyping rules

• General rules

• Record type rules

24

Sunday, September 9, 12

Regular Expression Rules

25

Simplification rules

1) T | ✏ ! T if T is nullable
2) T | ✏ ! T?
3) T+ | ✏ ! T⇤
4) T · ✏ | U ! T + U
5) ✏ · T | U ! T + U
6) T | T ! T

Subtyping rules

7) T | U ! U if T ⇠ U and |T | > |U |
8) T | U ! U if T . U and |T | > |U |

General rules

9) T | T · U ! T · U?
10) T · U | T · V ! T · (U + V)
11) T | U · T ! U? · T
12) U · T | V · T ! (U + V) · T

Sunday, September 9, 12

Record Type Rules

26

13) {l1 : T1} � U | {l1 : T2} � V ! {l1 : T1 + T2} � (U + V)
14) T | T � U ! T � U?
15) T � U | T � V ! T � (U + V)

Sunday, September 9, 12

Type Fusion Algorithm
• An heuristic algorithm that focuses on types with low

cardinality

• Types with cardinality greater than a given threshold
are ignored to improve the overall precision

• Types are ordered by ascending cardinality into a
priority queue

• At each iteration

• The type with the lowest cardinality is popped

• The type is compared with the other types in the
queue to see if a fusion rule is applicable

• The algorithm halts when no more fusions are possible
or a given threshold is satisfied

27

Sunday, September 9, 12

Example
• Output of the reduce phase: <T1;{2}>, <T2; {1}>,

<T3; {1}>

• Record types are splitted into concatenations of
single-field record types

T1 = { id : Number}� T2 = { id : Number}�
{ age : Number}� { name : String}�
{ admin : Bool}� { email : String}�
{ name : String}� { admin : Bool}
{ phone : Number}

T3 = { id : Number}�
{ name : String}�
{ admin : Bool}�
{ age : Number}�
{ phone : String}�
{ email : String}

28

Sunday, September 9, 12

Example
• T2 is selected and fused with T3 by using Rule (14)

• Fused type V1

V1 = {id : Number}�
{name : String}�
{email : String}�
{admin : Bool}�
({age : number} � {phone : String})?

29

Sunday, September 9, 12

Example
• T1 is selected and fused with V1 by using Rule (15)

• Fused type V2

30

V2 = {id : Number}�
{name : String}�
{admin : Bool}�
(({age : Number} � {phone : String})+
({email : String} � ({age : Number} � {phone : Number})?))

Sunday, September 9, 12

Example
• V2 is further simplified by applying fusion rules to its

union types

• Rule (15) is applied to factorize {age:Number}

• Rule (13) is then applied to phone fields

• Output type

31

V3 = {id : Number}�
{name : String}�
{admin : Bool}�
({age : Number} � ({phone : String +Number} � {email : String})?)?

Sunday, September 9, 12

CONCLUSIONS AND
FUTURE WORK

Sunday, September 9, 12

Research Status
• A very preliminary work

• We are working on

• Defining a richer set of fusion rules

• Improving the fusion algorithm

• Designing a Map/Reduce fusion algorithm

• Adapting our algorithm to the type languages of
existing cloud languages

33

Sunday, September 9, 12

Conclusions

• An approach for typing massive datasets of JSON
objects

• Based on fusion rules

• Adaptable to Map/Reduce

34

Sunday, September 9, 12

